scholarly journals Promyelocytic Leukemia Protein (PML) Requirement for Interferon-induced Global Cellular SUMOylation

2018 ◽  
Vol 17 (6) ◽  
pp. 1196-1208 ◽  
Author(s):  
Mohamed Ali Maroui ◽  
Ghizlane Maarifi ◽  
Francis P. McManus ◽  
Frédéric Lamoliatte ◽  
Pierre Thibault ◽  
...  

We report that interferon (IFN) α treatment at short and long periods increases the global cellular SUMOylation and requires the presence of the SUMO E3 ligase promyelocytic leukemia protein (PML), the organizer of PML nuclear bodies (NBs). Several PML isoforms (PMLI-PMLVII) derived from a single PML gene by alternative splicing, share the same N-terminal region but differ in their C-terminal sequences. Introducing each of the human PML isoform in PML-negative cells revealed that enhanced SUMOylation in response to IFN is orchestrated by PMLIII and PMLIV. Large-scale proteomics experiments enabled the identification of 558 SUMO sites on 389 proteins, of which 172 sites showed differential regulation upon IFNα stimulation, including K49 from UBC9, the sole SUMO E2 protein. Furthermore, IFNα induces PML-dependent UBC9 transfer to the nuclear matrix where it colocalizes with PML within the NBs and enhances cellular SUMOylation levels. Our results demonstrate that SUMOylated UBC9 and PML are key players for IFN-increased cellular SUMOylation.

2002 ◽  
Vol 157 (6) ◽  
pp. 975-984 ◽  
Author(s):  
Michael Morgan ◽  
Jacqueline Thorburn ◽  
Pier Paolo Pandolfi ◽  
Andrew Thorburn

The adapter protein tumor necrosis factor receptor (TNFR)1–associated death domain (TRADD) plays an essential role in recruiting signaling molecules to the TNFRI receptor complex at the cell membrane. Here we show that TRADD contains a nuclear export and import sequence that allow shuttling between the nucleus and the cytoplasm. In the absence of export, TRADD is found within nuclear structures that are associated with promyelocytic leukemia protein (PML) nuclear bodies. In these structures, the TRADD death domain (TRADD-DD) can activate an apoptosis pathway that is mechanistically distinct from its action at the membrane-bound TNFR1 complex. Apoptosis by nuclear TRADD-DD is promyelocytic leukemia protein dependent, involves p53, and is inhibited by Bcl-xL but not by caspase inhibitors or dominant negative FADD (FADD-DN). Conversely, apoptosis induced by TRADD in the cytoplasm is resistant to Bcl-xL, but sensitive to caspase inhibitors and FADD-DN. These data indicate that nucleocytoplasmic shuttling of TRADD leads to the activation of distinct apoptosis mechanisms that connect the death receptor apparatus to nuclear events.


2001 ◽  
Vol 193 (12) ◽  
pp. 1361-1372 ◽  
Author(s):  
Valérie Lallemand-Breitenbach ◽  
Jun Zhu ◽  
Francine Puvion ◽  
Marcel Koken ◽  
Nicole Honoré ◽  
...  

Promyelocytic leukemia (PML) is the organizer of nuclear matrix domains, PML nuclear bodies (NBs), with a proposed role in apoptosis control. In acute promyelocytic leukemia, PML/retinoic acid receptor (RAR) α expression disrupts NBs, but therapies such as retinoic acid or arsenic trioxide (As2O3) restore them. PML is conjugated by the ubiquitin-related peptide SUMO-1, a process enhanced by As2O3 and proposed to target PML to the nuclear matrix. We demonstrate that As2O3 triggers the proteasome-dependent degradation of PML and PML/RARα and that this process requires a specific sumolation site in PML, K160. PML sumolation is dispensable for its As2O3-induced matrix targeting and formation of primary nuclear aggregates, but is required for the formation of secondary shell-like NBs. Interestingly, only these mature NBs harbor 11S proteasome components, which are further recruited upon As2O3 exposure. Proteasome recruitment by sumolated PML only likely accounts for the failure of PML-K160R to be degraded. Therefore, studying the basis of As2O3-induced PML/RARα degradation we show that PML sumolation directly or indirectly promotes its catabolism, suggesting that mature NBs could be sites of intranuclear proteolysis and opening new insights into NB alterations found in viral infections or transformation.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
David Ribet ◽  
Valérie Lallemand-Breitenbach ◽  
Omar Ferhi ◽  
Marie-Anne Nahori ◽  
Hugo Varet ◽  
...  

ABSTRACT The promyelocytic leukemia protein (PML) is the main organizer of stress-responsive subnuclear structures called PML nuclear bodies. These structures recruit multiple interactors and modulate their abundance or their posttranslational modifications, notably by the SUMO ubiquitin-like modifiers. The involvement of PML in antiviral responses is well established. In contrast, the role of PML in bacterial infection remains poorly characterized. Here, we show that PML restricts infection by the pathogenic bacterium Listeria monocytogenes but not by Salmonella enterica serovar Typhimurium. During infection, PML undergoes oxidation-mediated multimerization, associates with the nuclear matrix, and becomes de-SUMOylated due to the pore-forming activity of the Listeria toxin listeriolysin O (LLO). These events trigger an antibacterial response that is not observed during in vitro infection by an LLO-defective Listeria mutant, but which can be phenocopied by specific induction of PML de-SUMOylation. Using transcriptomic and proteomic microarrays, we also characterized a network of immunity genes and cytokines, which are regulated by PML in response to Listeria infection but independently from the listeriolysin O toxin. Our study thus highlights two mechanistically distinct complementary roles of PML in host responses against bacterial infection. IMPORTANCE The promyelocytic leukemia protein (PML) is a eukaryotic protein that can polymerize in discrete nuclear assemblies known as PML nuclear bodies (NBs) and plays essential roles in many different cellular processes. Key to its function, PML can be posttranslationally modified by SUMO, a ubiquitin-like modifier. Identification of the role of PML in antiviral defenses has been deeply documented. In contrast, the role of PML in antibacterial defenses remains elusive. Here, we identify two mechanistically distinct complementary roles of PML in antibacterial responses against pathogens such as Listeria: (i) we show that PML regulates the expression of immunity genes in response to bacterial infection, and (ii) we unveil the fact that modification of PML SUMOylation by bacterial pore-forming toxins is sensed as a danger signal, leading to a restriction of bacterial intracellular multiplication. Taken together, our data reinforce the concept that intranuclear bodies can dynamically regulate important processes, such as defense against invaders. IMPORTANCE The promyelocytic leukemia protein (PML) is a eukaryotic protein that can polymerize in discrete nuclear assemblies known as PML nuclear bodies (NBs) and plays essential roles in many different cellular processes. Key to its function, PML can be posttranslationally modified by SUMO, a ubiquitin-like modifier. Identification of the role of PML in antiviral defenses has been deeply documented. In contrast, the role of PML in antibacterial defenses remains elusive. Here, we identify two mechanistically distinct complementary roles of PML in antibacterial responses against pathogens such as Listeria: (i) we show that PML regulates the expression of immunity genes in response to bacterial infection, and (ii) we unveil the fact that modification of PML SUMOylation by bacterial pore-forming toxins is sensed as a danger signal, leading to a restriction of bacterial intracellular multiplication. Taken together, our data reinforce the concept that intranuclear bodies can dynamically regulate important processes, such as defense against invaders.


2015 ◽  
Vol 112 (46) ◽  
pp. 14278-14283 ◽  
Author(s):  
Lisa Ivanschitz ◽  
Yuki Takahashi ◽  
Florence Jollivet ◽  
Olivier Ayrault ◽  
Morgane Le Bras ◽  
...  

Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.


2021 ◽  
Author(s):  
Weronika Karle ◽  
Samuel Becker ◽  
Philipp Stenzel ◽  
Christoph Knosalla ◽  
Günter Siegel ◽  
...  

Promyelocytic leukemia protein (PML) is a constitutive component of PML nuclear bodies (PML-NBs), which function as stress-regulated SUMOylation factories. Since PML can also act as a regulator of the inflammatory and fibroproliferative responses characteristic of atherosclerosis, we investigated whether PML is implicated in this disease. Immunoblotting, ELISA and immunohistochemistry showed a strong up-regulation of PML in segments of human atherosclerotic coronary arteries compared to non-atherosclerotic ones. In particular, PML was concentrated in PML-NBs from alpha-smooth muscle actin-immunoreactive cells in plaque areas. To identify possible functional consequences of PML-accumulation in this cell-type, differentiated human coronary artery smooth muscle cells (dHCASMCs) were transfected with a vector containing the intact PML-gene. These PML-transfected HCASMCs showed higher levels of SUMO-1-dependent SUMOylated proteins, but lower levels of markers for smooth muscle cell differentiation and revealed more proliferation and migration activities than dHCASMCs transfected with the vector lacking a specific gene insert or with the vector containing a mutated PML-gene coding for a PML-form without SUMOylation activity. When dHCASMCs were incubated with different cytokines, higher PML-levels were observed only after IFN-γ stimulation, while the expression of differentiation markers decreased. However, these phenotypic changes were not observed in dHCASMCs treated with small interfering RNA (siRNA) suppressing PML-expression prior to IFN-γ stimulation. Taken together, our results imply that PML is a previously unknown functional factor in the molecular cascades associated with the pathogenesis of atherosclerosis and is positioned in vascular smooth muscle cells between up-stream IFN-γ activation and downstream SUMOylation.


2001 ◽  
Vol 276 (26) ◽  
pp. 23974-23985 ◽  
Author(s):  
William T. Tse ◽  
Ju Tang ◽  
Ou Jin ◽  
Catherine Korsgren ◽  
Kathryn M. John ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document