scholarly journals Classification of Transmembrane Protein Families in the Caenorhabditis elegans Genome and Identification of Human Orthologs

2000 ◽  
Vol 10 (11) ◽  
pp. 1679-1689 ◽  
Author(s):  
M. Remm
Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 185-206 ◽  
Author(s):  
Rebecca M Terns ◽  
Peggy Kroll-Conner ◽  
Jiangwen Zhu ◽  
Sooyoun Chung ◽  
Joel H Rothman

To identify genomic regions required for establishment and patterning of the epidermis, we screened 58 deficiencies that collectively delete at least ∼67% of the Caenorhabditis elegans genome. The epidermal pattern of deficiency homozygous embryos was analyzed by examining expression of a marker specific for one of the three major epidermal cell types, the seam cells. The organization of the epidermis and internal organs was also analyzed using a monoclonal antibody specific for epithelial adherens junctions. While seven deficiencies had no apparent effect on seam cell production, 21 were found to result in subnormal, and five in excess numbers of these cells. An additional 23 deficiencies blocked expression of the seam cell marker, in some cases without preventing cell proliferation. Two deficiencies result in multinucleate seam cells. Deficiencies were also identified that result in subnormal numbers of epidermal cells, hyperfusion of epidermal cells into a large syncytium, or aberrant epidermal differentiation. Finally, analysis of internal epithelia revealed deficiencies that cause defects in formation of internal organs, including circularization of the intestine and bifurcation of the pharynx lumen. This study reveals that many regions of the C. elegans genome are required zygotically for patterning of the epidermis and other epithelia.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 500
Author(s):  
Juan A. Subirana ◽  
Xavier Messeguer

Repetitive genome regions have been difficult to sequence, mainly because of the comparatively small size of the fragments used in assembly. Satellites or tandem repeats are very abundant in nematodes and offer an excellent playground to evaluate different assembly methods. Here, we compare the structure of satellites found in three different assemblies of the Caenorhabditis elegans genome: the original sequence obtained by Sanger sequencing, an assembly based on PacBio technology, and an assembly using Nanopore sequencing reads. In general, satellites were found in equivalent genomic regions, but the new long-read methods (PacBio and Nanopore) tended to result in longer assembled satellites. Important differences exist between the assemblies resulting from the two long-read technologies, such as the sizes of long satellites. Our results also suggest that the lengths of some annotated genes with internal repeats which were assembled using Sanger sequencing are likely to be incorrect.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 712-724 ◽  
Author(s):  
Dave Pilgrim

A genetic approach was taken to identify new transposable element Tc1 -dependent polymorphisms on the left end of linkage group III in the nematode Caenorhabditis elegans. The cloning of the genomic DNA surrounding the Tc1 allowed the selection of overlapping clones (from the collection being used to assemble the physical map of the C. elegans genome). A contig of approximately 600–800 kbp in the region has been identified, the genetic map of the region has been refined, and 10 new RFLPs as well as at least four previously characterized genetic loci have been positioned onto the physical map, to the resolution of a few cosmids. This analysis demonstrated the ability to combine physical and genetic mapping for the rapid analysis of large genomic regions (0.5–1 Mbp) in genetically amenable eukaryotes.Key words: Caenorhabditis elegans, genome analysis, RFLP, physical map, genetic map.


2020 ◽  
Vol 106 (1) ◽  
pp. e350-e364
Author(s):  
Gustavo Armaiz-Pena ◽  
Shahida K Flores ◽  
Zi-Ming Cheng ◽  
Xhingyu Zhang ◽  
Emmanuel Esquivel ◽  
...  

Abstract Purpose This work aimed to evaluate genotype-phenotype associations in individuals carrying germline variants of transmembrane protein 127 gene (TMEM127), a poorly known gene that confers susceptibility to pheochromocytoma (PHEO) and paraganglioma (PGL). Design Data were collected from a registry of probands with TMEM127 variants, published reports, and public databases. Main Outcome Analysis Clinical, genetic, and functional associations were determined. Results The cohort comprised 110 index patients (111 variants) with a mean age of 45 years (range, 21-84 years). Females were predominant (76 vs 34, P < .001). Most patients had PHEO (n = 94; 85.5%), although PGL (n = 10; 9%) and renal cell carcinoma (RCC, n = 6; 5.4%) were also detected, either alone or in combination with PHEO. One-third of the cases had multiple tumors, and known family history was reported in 15.4%. Metastatic PHEO/PGL was rare (2.8%). Epinephrine alone, or combined with norepinephrine, accounted for 82% of the catecholamine profiles of PHEO/PGLs. Most variants (n = 63) occurred only once and 13 were recurrent (2-12 times). Although nontruncating variants were less frequent than truncating changes overall, they were predominant in non-PHEO clinical presentations (36% PHEO-only vs 69% other, P < .001) and clustered disproportionately within transmembrane regions (P < .01), underscoring the relevance of these domains for TMEM127 function. Integration of clinical and previous experimental data supported classification of variants into 4 groups based on mutation type, localization, and predicted disruption. Conclusions Patients with TMEM127 variants often resemble sporadic nonmetastatic PHEOs. PGL and RCC may also co-occur, although their causal link requires further evaluation. We propose a new classification to predict variant pathogenicity and assist with carrier surveillance.


Sign in / Sign up

Export Citation Format

Share Document