scholarly journals Consolidation of Memory for Odor–Reward Association: β-Adrenergic Receptor Involvement in the Late Phase

1999 ◽  
Vol 6 (2) ◽  
pp. 88-96 ◽  
Author(s):  
Susan J. Sara ◽  
Pascal Roullet ◽  
Jean Przybyslawski

Experimentally naive rats can learn rapidly to discriminate among three odors to obtain food reinforcement. After three massed trials, they show almost errorless performance. This task has proved to be useful in studying time-dependent postacquisition intracellular processes necessary for long-term memory. The present experiments evaluated the temporal dynamics of the role of β-noradrenergic receptors in long-term consolidation. Rats were implanted with intracerebroventricular cannulae and trained in a single session to find reinforcement in a hole in a sponge impregnated with a particular odor. Injections of the β-receptor antagonist timolol were made at 5 min, 1, 2, or 5 hr after training. Memory and relearning ability were evaluated 48 hr later. Rats treated with timolol 2 hr after training showed a memory deficit at the retention test, but were able to relearn the task normally. Injections at the earlier or later time points were ineffective. The results reinforce previous observations with systemic injections that β-noradrenergic receptors are involved in the late phase of memory consolidation and suggest a critical time window during which they are necessary. The time window is compatible with the current view that long-term memory depends on late involvement of the cAMP cascade leading to new protein synthesis necessary for synaptic reorganization.

2002 ◽  
Vol 22 (4) ◽  
pp. 1414-1425 ◽  
Author(s):  
Ildikó Kemenes ◽  
György Kemenes ◽  
Richard J. Andrew ◽  
Paul R. Benjamin ◽  
Michael O'Shea

Neuron ◽  
1999 ◽  
Vol 23 (4) ◽  
pp. 787-798 ◽  
Author(s):  
Scott T Wong ◽  
Jaime Athos ◽  
Xavier A Figueroa ◽  
Victor V Pineda ◽  
Michele L Schaefer ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Panagiotis Kyriakis ◽  
Sérgio Pequito ◽  
Paul Bogdan

Abstract Recent advances in network science, control theory, and fractional calculus provide us with mathematical tools necessary for modeling and controlling complex dynamical networks (CDNs) that exhibit long-term memory. Selecting the minimum number of driven nodes such that the network is steered to a prescribed state is a key problem to guarantee that complex networks have a desirable behavior. Therefore, in this paper, we study the effects of long-term memory and of the topological properties on the minimum number of driven nodes and the required control energy. To this end, we introduce Gramian-based methods for optimal driven node selection for complex dynamical networks with long-term memory and by leveraging the structure of the cost function, we design a greedy algorithm to obtain near-optimal approximations in a computationally efficiently manner. We investigate how the memory and topological properties influence the control effort by considering Erdős–Rényi, Barabási–Albert and Watts–Strogatz networks whose temporal dynamics follow a fractional order state equation. We provide evidence that scale-free and small-world networks are easier to control in terms of both the number of required actuators and the average control energy. Additionally, we show how our method could be applied to control complex networks originating from the human brain and we discover that certain brain cortex regions have a stronger impact on the controllability of network than others.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59075 ◽  
Author(s):  
Chang Yang ◽  
Jian-Feng Liu ◽  
Bai-Sheng Chai ◽  
Qin Fang ◽  
Ning Chai ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Smitha Karunakaran

AbstractIn this study we demonstrate that 2 month old APPswe/PS1dE9 mice, a transgenic model of Alzheimer’s disease, exhibited intact short-term memory in Pavlovian hippocampal—dependent contextual fear learning task. However, their long-term memory was impaired. Intra-CA1 infusion of isoproterenol hydrochloride, the β-adrenoceptor agonist, to the ventral hippocampus of APPswe/PS1dE9 mice immediately before fear conditioning restored long-term contextual fear memory. Infusion of the β-adrenoceptor agonist + 2.5 h after fear conditioning only partially rescued the fear memory, whereas infusion at + 12 h post conditioning did not interfere with long-term memory persistence in this mouse model. Furthermore, Intra-CA1 infusion of propranolol, the β-adrenoceptor antagonist, administered immediately before conditioning to their wildtype counterpart impaired long-term fear memory, while it was ineffective when administered + 4 h and + 12 h post conditioning. Our results indicate that, long-term fear memory persistence is determined by a unique β-adrenoceptor sensitive time window between 0 and + 2.5 h upon learning acquisition, in the ventral hippocampal CA1 of APPswe/PS1dE9 mice. On the contrary, β-adrenoceptor agonist delivery to ventral hippocampal CA1 per se did not enhance innate anxiety behaviour in open field test. Thus we conclude that, activation of learning dependent early β-adrenoceptor modulation underlies and is necessary to promote long-term fear memory persistence in APPswe/PS1dE9.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Micol Tomaiuolo ◽  
Cynthia Katche ◽  
Haydee Viola ◽  
Jorge H. Medina

The synaptic tagging and capture (STC) hypothesis provides a compelling explanation for synaptic specificity and facilitation of long-term potentiation. Its implication on long-term memory (LTM) formation led to postulate the behavioral tagging mechanism. Here we show that a maintenance tagging process may operate in the hippocampus late after acquisition for the persistence of long-lasting memory storage. The proposed maintenance tagging has several characteristics: (1) the tag is transient and time-dependent; (2) it sets in a late critical time window after an aversive training which induces a short-lasting LTM; (3) exposing rats to a novel environment specifically within this tag time window enables the consolidation to a long-lasting LTM; (4) a familiar environment exploration was not effective; (5) the effect of novelty on the promotion of memory persistence requires dopamine D1/D5 receptors and Arc expression in the dorsal hippocampus. The present results can be explained by a broader version of the behavioral tagging hypothesis and highlight the idea that the durability of a memory trace depends either on late tag mechanisms induced by a training session or on events experienced close in time to this tag.


Cell ◽  
1997 ◽  
Vol 88 (5) ◽  
pp. 615-626 ◽  
Author(s):  
Ted Abel ◽  
Peter V Nguyen ◽  
Mark Barad ◽  
Thomas A.S Deuel ◽  
Eric R Kandel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document