Two-Step Bacterial Artificial Chromosome (BAC) Engineering: Verification of Co-Integrates and Selection of Resolved BAC Clones

2020 ◽  
Vol 2020 (4) ◽  
pp. pdb.prot098087 ◽  
Author(s):  
Nathaniel Heintz ◽  
Shiaoching Gong
Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Yaping Qian ◽  
Li Jin ◽  
Bing Su

The large-insert genomic DNA library is a critical resource for genome-wide genetic dissection of target species. We constructed a high-redundancy bacterial artificial chromosome (BAC) library of a New World monkey species, the black-handed spider monkey (Ateles geoffroyi). A total of 193 152 BAC clones were generated in this library. The average insert size of the BAC clones was estimated to be 184.6 kb with the small inserts (50-100 kb) accounting for less than 3% and the non-recombinant clones only 1.2%. Assuming a similar genome size with humans, the spider monkey BAC library has about 11× genome coverage. In addition, by end sequencing of randomly selected BAC clones, we generated 367 sequence tags for the library. When blasted against human genome, they showed a good correlation between the number of hit clones and the size of the chromosomes, an indication of unbiased chromosomal distribution of the library. This black-handed spider monkey BAC library would serve as a valuable resource in comparative genomic study and large-scale genome sequencing of nonhuman primates.Key words: black-handed spider monkeys, Ateles geoffroyi, BAC library.


1998 ◽  
Vol 66 (5) ◽  
pp. 2221-2229 ◽  
Author(s):  
Roland Brosch ◽  
Stephen V. Gordon ◽  
Alain Billault ◽  
Thierry Garnier ◽  
Karin Eiglmeier ◽  
...  

ABSTRACT The bacterial artificial chromosome (BAC) cloning system is capable of stably propagating large, complex DNA inserts in Escherichia coli. As part of the Mycobacterium tuberculosis H37Rv genome sequencing project, a BAC library was constructed in the pBeloBAC11 vector and used for genome mapping, confirmation of sequence assembly, and sequencing. The library contains about 5,000 BAC clones, with inserts ranging in size from 25 to 104 kb, representing theoretically a 70-fold coverage of the M. tuberculosisgenome (4.4 Mb). A total of 840 sequences from the T7 and SP6 termini of 420 BACs were determined and compared to those of a partial genomic database. These sequences showed excellent correlation between the estimated sizes and positions of the BAC clones and the sizes and positions of previously sequenced cosmids and the resulting contigs. Many BAC clones represent linking clones between sequenced cosmids, allowing full coverage of the H37Rv chromosome, and they are now being shotgun sequenced in the framework of the H37Rv sequencing project. Also, no chimeric, deleted, or rearranged BAC clones were detected, which was of major importance for the correct mapping and assembly of the H37Rv sequence. The minimal overlapping set contains 68 unique BAC clones and spans the whole H37Rv chromosome with the exception of a single gap of ∼150 kb. As a postgenomic application, the canonical BAC set was used in a comparative study to reveal chromosomal polymorphisms between M. tuberculosis, M. bovis, and M. bovis BCG Pasteur, and a novel 12.7-kb segment present in M. tuberculosis but absent from M. bovis and M. bovis BCG was characterized. This region contains a set of genes whose products show low similarity to proteins involved in polysaccharide biosynthesis. The H37Rv BAC library therefore provides us with a powerful tool both for the generation and confirmation of sequence data as well as for comparative genomics and other postgenomic applications. It represents a major resource for present and future M. tuberculosis research projects.


2011 ◽  
Vol 92 (7) ◽  
pp. 1500-1507 ◽  
Author(s):  
Stephen J. Spatz ◽  
Lorraine P. Smith ◽  
Susan J. Baigent ◽  
Lawrence Petherbridge ◽  
Venugopal Nair

The identification of specific genetic changes associated with differences in the pathogenicity of Marek's disease virus strains (GaHV-2) has been a formidable task due to the large number of mutations in mixed-genotype populations within DNA preparations. Very virulent UK isolate C12/130 induces extensive lymphoid atrophy, neurological manifestations and early mortality in young birds. We have recently reported the construction of several independent full-length bacterial artificial chromosome (BAC) clones of C12/130 capable of generating fully infectious viruses with significant differences in their pathogenicity profiles. Two of these clones (vC12/130-10 and vC12/130-15), which showed differences in virulence relative to each other and to the parental strain, had similar replication kinetics both in vitro and in vivo in spite of the fact that vC12/130-15 was attenuated. To investigate the possible reasons for this, the nucleotide sequences of both clones were determined. Sequence analysis of the two genomes identified mutations within eight genes. A single 494 bp insertion was identified within the genome of the virulent vC12/130-10 clone. Seven non-synonymous substitutions distinguished virulent vC12/130-10 from that of attenuated vC12/130-15. By sequencing regions of parental DNA that differed between the two BAC clones, we confirmed that C12/130 does contain these mutations in varying proportions. Since the individual reconstituted BAC clones were functionally attenuated in vivo and derived from a single DNA source of phenotypically very virulent C12/130, this suggests that the C12/130 virus population exists as a collection of mixed genotypes.


Genome ◽  
2005 ◽  
Vol 48 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Khalid Meksem ◽  
Jeffry Shultz ◽  
Faiza Tebbji ◽  
Aziz Jamai ◽  
Jürgen Henrich ◽  
...  

Ustilago maydis, a basidiomycete, is a model organism among phytopathogenic fungi. A physical map of U. maydis strain 521 was developed from bacterial artificial chromosome (BAC) clones. BAC fingerprints used polyacrylamide gel electrophoresis to separate restriction fragments. Fragments were labeled at the HindIII site and codigested with HaeIII to reduce fragments to 50–750 bp. Contiguous overlapping sets of clones (contigs) were assembled at nine stringencies (from P ≤ 1 x 10–6 to 1 x 10–24). Each assembly nucleated contigs with different percentages of bands overlapping between clones (from 20% to 97%). The number of clones per contig decreased linearly from 41 to 12 from P ≤ 1 x 10–7 to 1 x 10–12. The number of separate contigs increased from 56 to 150 over the same range. A hybridization-based physical map of the same BAC clones was compared with the fingerprint contigs built at P ≤ 1 × 10–7. The two methods provided consistent physical maps that were largely validated by genome sequence. The combined hybridization and fingerprint physical map provided a minimum tile path composed of 258 BAC clones (18–20 Mbp) distributed among 28 merged contigs. The genome of U. maydis was estimated to be 20.5 Mbp by pulsed-field gel electrophoresis and 24 Mbp by BAC fingerprints. There were 23 separate chromosomes inferred by both pulsed-field gel electrophoresis and fingerprint contigs. Only 11 of the tile path BAC clones contained recognizable centromere, telomere, and subtelomere repeats (high-copy DNA), suggesting that repeats caused some false merges. There were 247 tile path BAC clones that encompassed about 17.5 Mbp of low-copy DNA sequence. BAC clones are available for repeat and unique gene cluster analysis including tDNA-mediated transformation. Program FingerPrint Contigs maps aligned with each chromosome can be viewed at http://www.siu.edu/~meksem/ustilago_maydis/.Key words: Ustilago maydis, physical map, bacterial artificial chromosomes, whole-genome sequencing.


2002 ◽  
Vol 70 (10) ◽  
pp. 5568-5578 ◽  
Author(s):  
Priscille Brodin ◽  
Karin Eiglmeier ◽  
Magali Marmiesse ◽  
Alain Billault ◽  
Thierry Garnier ◽  
...  

ABSTRACT Mycobacterium microti is a member of the Mycobacterium tuberculosis complex that causes tuberculosis in voles. Most strains of M. microti are harmless for humans, and some have been successfully used as live tuberculosis vaccines. In an attempt to identify putative virulence factors of the tubercle bacilli, genes that are absent from the avirulent M. microti but present in human pathogen M. tuberculosis or Mycobacterium bovis were searched for. A minimal set of 50 bacterial artificial chromosome (BAC) clones that covers almost all of the genome of M. microti OV254 was constructed, and individual BACs were compared to the corresponding BACs from M. bovis AF2122/97 and M. tuberculosis H37Rv. Comparison of pulsed-field gel-separated DNA digests of BAC clones led to the identification of 10 regions of difference (RD) between M. microti OV254 and M. tuberculosis. A 14-kb chromosomal region (RD1mic) that partly overlaps the RD1 deletion in the BCG vaccine strain was missing from the genomes of all nine tested M. microti strains. This region covers 13 genes, Rv3864 to Rv3876, in M. tuberculosis, including those encoding the potent ESAT-6 and CFP-10 antigens. In contrast, RD5mic, a region that contains three phospholipase C genes (plcA to -C), was missing from only the vole isolates and was present in M. microti strains isolated from humans. Apart from RD1mic and RD5mic other M. microti-specific deleted regions have been identified (MiD1 to MiD3). Deletion of MiD1 has removed parts of the direct repeat region in M. microti and thus contributes to the characteristic spoligotype of M. microti strains.


Sign in / Sign up

Export Citation Format

Share Document