bac clones
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 12)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Xu ◽  
Mengjie Liang ◽  
Xue Yang ◽  
Hao Wang ◽  
Meizhong Luo

Abstract Background With high-efficient water-use and drought tolerance, broomcorn millet has emerged as a candidate for food security. To promote its research process for molecular breeding and functional research, a comprehensive genome resource is of great importance. Results Herein, we constructed a BAC library for broomcorn millet, generated BAC end sequences based on the clone-array pooled shotgun sequencing strategy and Illumina sequencing technology, and integrated BAC clones into genome by a novel pipeline for BAC end profiling. The BAC library consisted of 76,023 clones with an average insert length of 123.48 Kb, covering about 9.9-fold of the 850 Mb genome. Of 9216 clones tested using our pipeline, 8262 clones were mapped on the broomcorn millet cultivar longmi4 genome. These mapped clones covered 308 of the 829 gaps left by the genome. To our knowledge, this is the only BAC resource for broomcorn millet. Conclusions We constructed a high-quality BAC libraray for broomcorn millet and designed a novel pipeline for BAC end profiling. BAC clones can be browsed and obtained from our website (http://eightstarsbio.com/gresource/JBrowse-1.16.5/index.html). The high-quality BAC clones mapped on genome in this study will provide a powerful genomic resource for genome gap filling, complex segment sequencing, FISH, functional research and genetic engineering of broomcorn millet.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liping Hu ◽  
Liming Jiang ◽  
Qiang Xing ◽  
Zujing Yang ◽  
Qiang Zhao ◽  
...  

Zhikong scallop (Chlamys farreri) is a bivalve species with broad economic and biological value, and an essential species of aquaculture in North China. Recently, efforts have been made to improve knowledge of genome, genetics, and cytogenetics, which is devoted to develop the molecular breeding project for the scallop. In this study, we constructed a cytogenetic map and identified all chromosomes of C. farreri using fluorescence in situ hybridization (FISH). A total of 100 Bacterial Artificial Chromosome (BAC) clones and 27 fosmid clones, including 58 microsatellite marker-anchored BAC clones, 4 genes-anchored BAC clones, 38 random BAC clones, 22 repetitive sequences-anchored fosmid clones, and 5 gene-anchored fosmid clones, were tested as probes, and 69 of them produced specific and stable signal on one pair of chromosomes. Then, multiple co-hybridizations were conducted to distinguish all the submetacentric and subtelocentric chromosomes with similar morphology by the abovementioned chromosome-specific markers. On this basis, a cytogenetic map of C. farreri containing 69 clones was constructed by co-hybridization and karyotype analysis. The markers covered all 19 pairs of chromosomes, and the average number of markers on each chromosome was 3.6. The cytogenetic map provides a platform for genetic and genomic analysis of C. farreri, which facilitates the molecular breeding project of C. farreri and promotes the comparative studies of chromosome evolution in scallops and even bivalves.


2021 ◽  
Author(s):  
Eric P. Schultz ◽  
Qin Yu ◽  
Cora Stegmann ◽  
Le Zhang Day ◽  
Jean-Marc Lanchy ◽  
...  

Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but the how the gH/gL portion of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB dependent cell-cell fusion, but were still able to form gH/gL/pUL128-131 and induce receptor-interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. Effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRα, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a “hyperactive” gH/gL/gO. Recently published crystallography and cryo-EM studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB. IMPORTANCE The endemic beta -herpesvirus HCMV circulates in human populations as a complex mixture of genetically distinct variants, establishes lifelong persistent infections, and causes significant disease in neonates and immunocompromised adults. This study capitalizes on our recent characterizations of three genetically distinct HCMV BAC clones to discern the functions of the envelope glycoprotein complexes gH/gL/gO and gH/gL/pUL128-13, which are promising vaccine targets that share the herpesvirus core fusion apparatus component, gH/gL. Mutations in the shared gL subunit disproportionally affected gH/gL/gO, demonstrating mechanistic differences between the two complexes, and may provide a basis for more refined evaluations of neutralizing antibodies.


2021 ◽  
Author(s):  
Wei Xu ◽  
Mengjie Liang ◽  
Xue Yang ◽  
Hao Wang ◽  
Meizhong Luo

Abstract Background: With high-efficient water-use and drought tolerance, broomcorn millet has emerged as a candidate for food security. To promote its research process for molecular breeding and functional research, a comprehensive genome resource is of great importance. Results: Herein, we constructed a BAC library for broomcorn millet, generated BAC end sequences based on the clone-array pooled shotgun sequencing strategy and Illumina sequencing technology, and integrated BAC clones into genome by a novel pipeline for BAC end profiling. The BAC library is consisted of 76,023 clones with an average insert length of 123.48 Kb, covering about 9.9-fold of the 850 Mb genome. Of 9,216 clones tested using our pipeline, 8,262 clones were mapped on the broomcorn millet cultivar longmi4 genome. These mapped clones covered 308 of the 829 gaps left by the genome. To our knowledge, this is the only BAC resource for broomcorn millet.Conclusions: We constructed a high-quality BAC libraray for broomcorn millet and designed a novel pipeline for BAC end profiling. BAC clones can be browsed and obtained from our website (http://eightstarsbio.com/gresource/JBrowse-1.16.5/index.html). The high-quality BAC clones mapped on genome in this study will provide a powerful genomic resource for genome gap filling, complex segment sequencing, FISH, functional research, and genetic engineering of broomcorn millet.


2021 ◽  
Author(s):  
Eric P. Schultz ◽  
Qin Yu ◽  
Cora Stegmann ◽  
Le Zhang Day ◽  
Jean-Marc Lanchy ◽  
...  

Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but the how the gH/gL portion of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB dependent cell-cell fusion, but were still able to form gH/gL/pUL128-131 and induce receptor-interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. Effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRa, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a “hyperactive” gH/gL/gO. Recently published crystallography and cryo-EM studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB.


2021 ◽  
Author(s):  
Nicolas Pompidor ◽  
Carine Charron ◽  
Catherine Hervouet ◽  
Stéphanie Bocs ◽  
Gaëtan Droc ◽  
...  

Abstract Background and Aims Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum. Methods To analyse the architecture and origin of such a complex genome, we analysed the sequences of all 12 hom(oe)ologous haplotypes (BAC clones) from two distinct genomic regions of a typical modern cultivar, as well as the corresponding sequence in Miscanthus sinense and Sorghum bicolor, and monitored their distribution among representatives of the Saccharum genus. Key Results The diversity observed among haplotypes suggested the existence of three founding genomes (A, B, C) in modern cultivars, which diverged between 0.8 and 1.3 Mya. Two genomes (A, B) were contributed by S. officinarum; these were also found in its wild presumed ancestor S. robustum, and one genome (C) was contributed by S. spontaneum. These results suggest that S. officinarum and S. robustum are derived from interspecific hybridization between two unknown ancestors (A and B genomes). The A genome contributed most haplotypes (nine or ten) while the B and C genomes contributed one or two haplotypes in the regions analysed of this typical modern cultivar. Interspecific hybridizations likely involved accessions or gametes with distinct ploidy levels and/or were followed by a series of backcrosses with the A genome. The three founding genomes were found in all S. barberi, S. sinense and modern cultivars analysed. None of the analysed accessions contained only the A genome or the B genome, suggesting that representatives of these founding genomes remain to be discovered. Conclusions This evolutionary model, which combines interspecificity and high polyploidy, can explain the variable chromosome pairing affinity observed in Saccharum. It represents a major revision of the understanding of Saccharum diversity.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Manuel A. Merlo ◽  
Silvia Portela-Bens ◽  
María E. Rodríguez ◽  
Aglaya García-Angulo ◽  
Ismael Cross ◽  
...  

Solea senegalensis aquaculture production has experienced a great increase in the last decade and, consequently, the genome knowledge of the species is gaining attention. In this sense, obtaining a high-density genome mapping of the species could offer clues to the aquaculture improvement in those aspects not resolved so far. In the present article, a review and new processed data have allowed to obtain a high-density BAC-based cytogenetic map of S. senegalensis beside the analysis of the sequences of such BAC clones to achieve integrative data. A total of 93 BAC clones were used to localize the chromosome complement of the species and 588 genes were annotated, thus almost reaching the 2.5% of the S. senegalensis genome sequences. As a result, important data about its genome organization and evolution were obtained, such as the lesser gene density of the large metacentric pair compared with the other metacentric chromosomes, which supports the theory of a sex proto-chromosome pair. In addition, chromosomes with a high number of linked genes that are conserved, even in distant species, were detected. This kind of result widens the knowledge of this species’ chromosome dynamics and evolution.


2020 ◽  
Author(s):  
Wei Xu ◽  
Mengjie Liang ◽  
Hao Wang ◽  
Meizhong Luo

AbstractBackgroundWith high-efficient water-use and drought tolerance, broomcorn millet has emerged as candidate for food security. To promote its research process for molecular breeding and functional research, a comprehensive genome resources is of great important.ResultsHerein, we constructed the first BAC library for broomcorn millet, generated BAC end sequences and integrated BAC clones into genome by a novel pipeline for BAC end profiling depending on clone-array pooled shotgun sequencing strategy and Illumina sequencing technology. The BAC library is consisted of 76,023 clones with average insert length of 123.48 Kb, about 9.9x coverage of 850 Mb genome. Then, 8262 of 9216 clones were mapped on broomcorn millet cultivar longmi4 genome using our pipeline. Furthermore, we also extracted and assembled unmapped reads against longmi4 genome. A total of 135 deletion sequences, 64 specific sequences and some sample contamination sequences were identified.ConclusionsBAC clones in this library can be browsed and obtained from our website (http://flyinguineapig.com/gresource/JBrowse-1.16.5/index.html). This pipeline designed for BAC end profiling can greatly reduce the cost of acquiring BAC end sequences and shorten the period of the experiment compared with the Sanger sequencing method. These high-quality BAC clones related with genome in this study provide a useful and convinient genomic resource for genome gap filling, complex segment sequencing, FISH, functional research, and genetic engineering.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emilio García ◽  
Ismael Cross ◽  
Silvia Portela-Bens ◽  
María E. Rodríguez ◽  
Aglaya García-Angulo ◽  
...  

AbstractRepetitive sequences play an essential role in the structural and functional evolution of the genome, particularly in the sexual chromosomes. The Senegalese sole (Solea senegalensis) is a valuable flatfish in aquaculture albeit few studies have addressed the mapping and characterization of repetitive DNA families. Here we analyzed the Simple Sequence Repeats (SSRs) and Transposable elements (TEs) content from fifty-seven BAC clones (spanning 7.9 Mb) of this species, located in chromosomes by multiple fluorescence in situ hybridization (m-BAC-FISH) technique. The SSR analysis revealed an average density of 675.1 loci per Mb and a high abundance (59.69%) of dinucleotide coverage was observed, being ‘AC’ the most abundant. An SSR-FISH analysis using eleven probes was also carried out and seven of the 11 probes yielded positive signals. ‘AC’ probes were present as large clusters in almost all chromosomes, supporting the bioinformatic analysis. Regarding TEs, DNA transposons (Class II) were the most abundant. In Class I, LINE elements were the most abundant and the hAT family was the most represented in Class II. Rex/Babar subfamily, observed in two BAC clones mapping to chromosome pair 1, showed the longest match. This chromosome pair has been recently reported as a putative sexual proto-chromosome in this species, highlighting the possible role of the Rex element in the evolution of this chromosome. In the Rex1 phylogenetic tree, the Senegalese sole Rex1 retrotransposon could be associated with one of the four major ancient lineages in fish genomes, in which it is included O. latipes.


Sign in / Sign up

Export Citation Format

Share Document