Synthetic Complete (SC) and Synthetic Defined (SD) Media for PCAs

2016 ◽  
Vol 2016 (11) ◽  
pp. pdb.rec090688
Keyword(s):  
2016 ◽  
pp. 1-5
Author(s):  
I. BAIGES ◽  
L. AROLA

Background:Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. Objective: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. Measurements: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. Results: CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. Conclusion: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate the search for biomolecules with potential anti-aging effects.


2019 ◽  
Vol 146 (1) ◽  
pp. 45-53
Author(s):  
Mounir Habachy

Summary In the present study, when a comparison is made between the combination of divine attributes sḫm and onX represented at the end of the “long complete” cartouches, and those held by the divinities inside “synthetic complete” cartouches of Ptolemy V and Ptolemy XII, the reading sXm-onX-Jmn is acceptable. But, when the same method is applied to the cartouches of Ptolemy IX Soter II, the reading becomes problematic. We are trying, then, to examine the reading of the Coronation name of this king.


Author(s):  
M.S.S. Murthy ◽  
B.S. Rao ◽  
N.M.S. Reddy ◽  
P. Subrahmanyam ◽  
U. Madhvanath
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3881
Author(s):  
Juan Ernesto López-Ramos ◽  
Elihú Bautista ◽  
Guadalupe Gutiérrez-Escobedo ◽  
Gabriela Mancilla-Montelongo ◽  
Irene Castaño ◽  
...  

Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis are the four most common human fungal pathogens isolated that can cause superficial and invasive infections. It has been shown that specific metabolites present in the secretomes of these fungal pathogens are important for their virulence. C. glabrata is the second most common isolate world-wide and has an innate resistance to azoles, xenobiotics and oxidative stress that allows this fungal pathogen to evade the immune response and persist within the host. Here, we analyzed and compared the C. glabrata secretome with those of C. albicans, C. parapsilosis, C. tropicalis and the non-pathogenic yeast Saccharomyces cerevisiae. In C. glabrata, we identified a different number of metabolites depending on the growth media: 12 in synthetic complete media (SC), 27 in SC-glutamic acid and 23 in rich media (YPD). C. glabrata specific metabolites are 1-dodecene (0.09 ± 0.11%), 2,5-dimethylundecane (1.01 ± 0.19%), 3,7-dimethyldecane (0.14 ± 0.15%), and octadecane (0.4 ± 0.53%). The metabolites that are shared with C. albicans, C. glabrata, C. parapsilosis, C. tropicalis and S. cerevisiae are phenylethanol, which is synthesized from phenylalanine, and eicosane and nonanoic acid (identified as trimethylsilyl ester), which are synthesized from fatty acid metabolism. Phenylethanol is the most abundant metabolite in all fungi tested: 26.36 ± 17.42% (C. glabrata), 46.77 ± 15.58% (C. albicans), 49.76 ± 18.43% (C. tropicalis), 5.72 ± 0.66% (C. parapsilosis.) and 44.58 ± 27.91% (S. cerevisiae). The analysis of C. glabrata’s secretome will allow us to further our understanding of the possible role these metabolites could play in its virulence.


Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 9-21 ◽  
Author(s):  
D F Steele ◽  
S Jinks-Robertson

Abstract Reversion to Lys+ prototrophy in a haploid yeast strain containing a defined lys2 frameshift mutation has been examined. When cells were plated on synthetic complete medium lacking only lysine, the numbers of Lys+ revertant colonies accumulated in a time-dependent manner in the absence of any detectable increase in cell number. An examination of the distribution of the numbers of early appearing Lys+ colonies from independent cultures suggests that the mutations to prototrophy occurred randomly during nonselective growth. In contrast, an examination of the distribution of late appearing Lys+ colonies indicates that the underlying reversion events occurred after selective plating. No accumulation of Lys+ revertants occurred when cells were starved for tryptophan, leucine or both lysine and tryptophan prior to plating selectively for Lys+ revertants. These results indicate that mutations accumulate more frequently when they confer a selective advantage, and are thus consistent with the occurrence of adaptive mutations in yeast.


2021 ◽  
Author(s):  
Yong-Shui Tan ◽  
Li Wang ◽  
Ying-Ying Wang ◽  
Qi-En He ◽  
Zhen Zhu ◽  
...  

Abstract Background Lignocellulosic biomass upgrading has become a promising alternative route to produce transportation fuels in response to energy security and environmental concerns. As the second most abundant polysaccharide in nature, hemicellulose mainly containing xylose is an important carbon source that can be used for the bioconversion to fuels and chemicals. However, the adaptation phenomena could appear and influence the bioconversion performance of xylose when Saccharomyces cerevisiae strain was transferred from the glucose to the xylose environment. Therefore, it is crucial to elucidate the mechanism of this adaptation phenomena, which can guide the strategy exploration to improve the efficiency of xylose utilization. Results In this study, xylose-utilizing strains had been constructed to effectively consume xylose. It is found that the second incubation of yYST218 strain in synthetic complete-xylose medium resulted in a 1.24-fold increase in xylose consumption ability as compared with the first incubation in synthetic complete-xylose medium. The results clearly showed that growing S. cerevisiae again in synthetic complete-xylose medium can significantly reduce the stagnation time and thus achieved a faster growth rate, by comparing the growth status of the strain in synthetic complete-xylose medium for the first and second time at the single-cell level through Microfluidic technology. Although these xylose-utilizing strains possessed different xylose metabolism pathways, they exhibited the “transient memory” phenomenon of xylose metabolism after changing the culture environment to synthetic complete-xylose medium, which named ‘xylose consumption memory (XCM)’ of S. cerevisiae in this study. According to the identification of protein acetylation, partial least squares analysis and the confirmatory test had verified that H4K5Ac affected the state of “XCM” in S. cerevisiae. Knockout of the acetylase-encoding genes GCN5 and HPA2 enhanced the “XCM” of the strain. Protein acetylation analysis suggested that xylose induced perturbation in S. cerevisiae stimulated the rapid adaptation of strains to xylose environment by regulating the level of acetylation. Conclusions All these results indicated protein acetylation modification is an important aspect that protein acetylation regulated the state of “XCM” in S. cerevisiae and thus determine the environmental adaptation of S. cerevisiae. Systematically exploiting the regulation approach of protein acetylation in S. cerevisiae could provide valuable insights into the adaptation phenomena of microorganisms in complex industrial environments.


Sign in / Sign up

Export Citation Format

Share Document