Cloning and Transformation with Plasmid Vectors

2021 ◽  
Vol 2021 (11) ◽  
pp. pdb.top101170
Author(s):  
Michael R. Green ◽  
Joseph Sambrook

Plasmids occupy a place of honor in molecular cloning: They were used in the first recombinant DNA experiments and, 40 or more years later, they remain as the carriage horses of molecular cloning. After almost half a century of sequential improvement in design, today's plasmid vectors are available in huge variety, are often optimized for specific purposes, and bear only passing resemblance to their forebears. Here, various features of plasmid vectors and methods for transforming E. coli cells are introduced.

Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


BJHS Themes ◽  
2020 ◽  
Vol 5 ◽  
pp. 225-243
Author(s):  
Angela N.H. Creager

AbstractLaboratory instructions and recipes are sometimes edited into books with a wide circulation. Even in the late twentieth century, publications of this nature remained influential. For example, protocols from a 1980 summer course on gene cloning at Cold Spring Harbor Laboratory provided the basis for a bestselling laboratory manual by Tom Maniatis, Ed Fritsch and Joe Sambrook. Not only did the Molecular Cloning: A Laboratory Manual become a standard reference for molecular biologists (commonly called the ‘bible’), but also its recipes and clear instructions made gene cloning and recombinant DNA technologies accessible to non-specialists. Consequently, this laboratory manual contributed to the rapid spread of genetic-engineering techniques throughout the life sciences, as well as in industry. As is often the case with how-to books, however, finding a way to update methods in this rapidly changing field posed a challenge, and various molecular-biology reference books had different ways of dealing with knowledge obsolescence. This paper explores the origins of this manual, its publication history, its reception and its rivals – as well as the more recent migration of such laboratory manuals to the Internet.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


2000 ◽  
Vol 10 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Suk-Yoon Kwon ◽  
Chung Sun An ◽  
Jang Ryol Liu ◽  
Sang-Soo Kwak ◽  
Haeng-Soon Lee ◽  
...  

2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Aris Haryanto

Isoform importin α molecules play a central role in the classical nuclear import pathway, that occurs throughthe nuclear pore complex (NPC) and typically requires a specific nuclear localization signal (NLS). In this study,it was investigated the role of isoforms importin α in the nuclear import of wild type recombinant hepatitis B viruscore protein (WT rHBc), phosphorylated recombinant HBV core (rHBc) and recombinant HBV core without NLSby co-immunoprecipitation. Four recombinant full-length isoforms importin α as 6x histidin-tagged fusion proteinwere expressed and analysed from expression plasmid vectors Rch1, pHM 1969, pHM 1967 and pHM 1965. Theresults indicated that importin α-1, importin α-3, importin α-4 and importin α-5 can be expressed and isolatedfrom E. coli transformed recombinant DNA plasmid as protein in size around 58-60 kDa. By the nuclear transportstudy shown that isoforms importin α are involved in the nuclear import of WT rHBc, phosphorylated rHBc andrHBc without NLS. It also indicated that they have an important role for nuclear transport of from cytoplasm intothe nucleus.Keywords: NPC, NLS, importin α, importin β, isoforms importin α as 6x histidin-tagged fusion protein, WTrHBc, SV40 Tag, co-immunoprecipitation, westernblotting.


1986 ◽  
Vol 69 (3) ◽  
pp. 531-536
Author(s):  
Walter E Hill ◽  
Barry A Wentz ◽  
William L Payne ◽  
James A Jagow ◽  
Gerald Zon ◽  
...  

Abstract The genes that encode several of the enterotoxins produced by Escherichia coli have been cloned by recombinant DNA techniques. When the nucleotide sequence of these genes is determined, defined sequence oligonucleotides that include a part of these genes may be synthesized. A 22-base DNA hybridization probe was produced for each of 2 heatstable E. coli enterotoxin (ST) genes: STH, from strains originally isolated from humans; and STP, from strains first found in pigs. For this study, 32P end-labeled DNA probes, sonicated calf thymus DNA, and 3 known and 20 unknown (10 ST-positive and 10 ST-negative) strains were sent to each of 23 collaborators. Cultures were spotted onto an agar-based medium and grown into colonies, which were transferred by blotting to cellulose filters, lysed by alkali and steam, and used for DNA colony hybridization with the ST DNA probes. Strains containing an ST gene were recognized as dark spots on an autoradiogram. Of the 460 samples analyzed, 440 (95.7%) were correctly classified by the collaborators. The method has been adopted official first action.


2013 ◽  
Vol 5 (3) ◽  
pp. 499-513
Author(s):  
M. Z. Alam ◽  
L. Ragionieri ◽  
M. A. S. Santos ◽  
A. Iqbal

Enzymes and other protein purification using recombinant DNA technology have become popular due to scarcity of natural protein. Saccharomyces cerevisiae is a demanding host, since it facilitates protein expression by its relative simplicity, safe organisms, inexpensive and has many properties of eukaryotic expression system. As an alternative host we express E. coli lacZ gene with GST tag in Saccharomyces cerevisiae and successfully purified from soluble extracts. The concentration of soluble GST-? galactosidase protein was approximately 0.57 mg/ml of elution buffer yielded from 50 ml yeast cell culture. The ?-galactosidase protein from insoluble extract was low due to the increasing solubility of GST tag. Keywords: ?-galactosidase; Heterologous expression; GST tag; Affinity chromatography. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v5i3.13820 J. Sci. Res. 5 (3), 499-513 (2013)  


Nature ◽  
1979 ◽  
Vol 278 (5707) ◽  
pp. 776-776
Author(s):  
H. WILLIAMS SMITH
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document