recombinant dna techniques
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 6)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 8 (1) ◽  
pp. 35-44
Author(s):  
Zuzana Brnáková ◽  
Jarmila Farkašovská ◽  
Annamária Rusnáková ◽  
Andrej Godány

Many streptomycetes strains are hardly or not at all transformable via protoplasts, or there is a problem with the regeneration of protoplasts. We found that protoplasts are formed directly in cultivation media under submerged conditions in the presence of lytic enzyme. Actinophage μ1/6 endolysin and lysozyme were used in this study. Streptomyces strains were cultivated in several media with glycine and lytic enzyme for 24 and 48h. The highest amounts of protoplasts (about 3 x 107 cfu/ml of cultivation medium) together with the highest regeneration (95%) and transformation frequency (about 2 x 106 – 107 cfu/μg DNA) were obtained reproducibly in YEME medium with high sucrose content. S. aureofaciens B96, as hardly transformable strain because of difficulties with protoplast preparation and their further regeneration, was used in this study. The same procedure was applied to S. lividans 66 TK24 and S. coelicolor A3(2), streptomycetes model strains, to confirm the general use of this method. Moreover, such cultivation process was appropriate for additional quick isolation of either chromosomal as well as plasmid DNA that could be further used in recombinant DNA techniques.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 803
Author(s):  
Werner J. Becker

Botulinum toxin type A has been used in the treatment of chronic migraine for over a decade and has become established as a well-tolerated option for the preventive therapy of chronic migraine. Ongoing research is gradually shedding light on its mechanism of action in migraine prevention. Given that its mechanism of action is quite different from that of the new monoclonal antibodies directed against calcitonin gene-related peptide (CGRP) or its receptor, it is unlikely to be displaced to any major extent by them. Both will likely remain as important tools for patients with chronic migraine and the clinicians assisting them. New types of botulinum toxin selective for sensory pain neurons may well be discovered or produced by recombinant DNA techniques in the coming decade, and this may greatly enhance its therapeutic usefulness. This review summarizes the evolution of botulinum toxin use in headache management over the past several decades and its role in the preventive treatment of chronic migraine and other headache disorders.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ching-Hsun Wang ◽  
L. Kristopher Siu ◽  
Feng-Yee Chang ◽  
Yu-Kuo Tsai ◽  
Yi-Tsung Lin ◽  
...  

ABSTRACT We report the first clinical Escherichia coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, Δ6-11 (RPISLR), in pmrB that contributes to colistin resistance was verified using recombinant DNA techniques. Although being less fit than the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Maywa Montenegro de Wit

Many trends in agricultural biotechnology have extended fluidly from the first era of genetic modification using recombinant DNA techniques to the era of gene editing. But the high-profile, explicit, and assertive discourse of democratization with gene editing — especially CRISPR-Cas9 — is something new. In this paper, I draw on semi-structured interviews with gene editors, policy analysts, and communications experts as well as with critical academic and civil society experts. I use Science and Technology Studies and political ecology lenses to unpack democratization in three main parts. First is democratizing discourses: On what grounds is CRISPR said to be democratic? Who is saying so? How do dissident communities respond to these narratives? Second is agricultural applications, with a focus on the Innovative Genomics Institute’s work in developing gene-edited food crops, including a case of saveable clonal hybrid rice. Third is governance, where I contrast US Department of Agriculture regulations and the CRISPRcon conference as “closed” and “invited” spaces, respectively, for democratic participation. Next, I argue that “created spaces,” in which power is held by typically delegitimized actors and ideas, offer an opening for working out democracy on the terrain of biotechnology. I conclude with a set of principles and practices for CRISPR governance based on the idea that democratization of biotechnology requires epistemic justice. By gathering multiple, partial knowledges together, we move beyond narrow risk-benefit framings to better evaluate not just what CRISPR is and does, but what democracy means and whom it serves.


2018 ◽  
Vol 366 (Supplement_1) ◽  
pp. i30-i41
Author(s):  
Rosa A Börner ◽  
Vijayalakshmi Kandasamy ◽  
Amalie M Axelsen ◽  
Alex T Nielsen ◽  
Elleke F Bosma

ABSTRACT This mini-review provides a perspective of traditional, emerging and future applications of lactic acid bacteria (LAB) and how genome editing tools can be used to overcome current challenges in all these applications. It also describes available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for gaining mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack speed and the number of genetically tractable strains is still rather limited. Further tool development will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design–Build–Test–Learn workflow cycle for LAB cell factory development based on systems biology, with ‘cell factory’ expanding beyond its traditional meaning of production strains and making use of genome editing tools to advance LAB understanding, applications and strain development.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 110 ◽  
Author(s):  
Muhammad Usman Khan ◽  
Maryam Pirzadeh ◽  
Carola Yvette Förster ◽  
Sergey Shityakov ◽  
Mohammad Ali Shariati

Milk-derived antibacterial peptides (ABPs) are protein fragments with a positive influence on the functions and conditions of a living organism. Milk-derived ABPs have several useful properties important for human health, comprising a significant antibacterial effect against various pathogens, but contain toxic side-effects. These compounds are mainly produced from milk proteins via fermentation and protein hydrolysis. However, they can also be produced using recombinant DNA techniques or organic synthesis. This review describes the role of milk-derived ABPs in modern food biotechnology with an emphasis on their synthesis and applications. Additionally, we also discuss the mechanisms of action and the main bioproperties of ABPs. Finally, we explore future perspectives for improving ABP physicochemical properties and diminishing their toxic side-effects.


Author(s):  
Rosa Aragão Börner ◽  
Vijayalakshmi Kandasamy ◽  
Amalie Melton Axelsen ◽  
Alex Toftgaard Nielsen ◽  
Elleke F Bosma

This mini-review provides an overview of traditional, emerging, and future applications of lactic acid bacteria (LAB) and discusses how genome editing tools can be used to overcome current challenges in all these applications. It also describes currently available tools and how these can be further developed, and takes current legislation into account. Genome editing tools are necessary for the construction of strains for new applications and products, but can also play a crucial role in traditional ones, such as food and probiotics, as a research tool for understanding mechanistic insights and discovering new properties. Traditionally, recombinant DNA techniques for LAB have strongly focused on being food-grade, but they lack throughput and the number of genetically tractable strains is still rather limited. Further tool development in this direction will enable rapid construction of multiple mutants or mutant libraries on a genomic level in a wide variety of LAB strains. We also propose an iterative Design-Build-Test-Learn workflow cycle for LAB cell factory development based on systems biology, with “cell factory” expanding beyond its traditional meaning of production strains and making use of high-throughput genome editing tools to advance LAB understanding, applications and strain development.


Sign in / Sign up

Export Citation Format

Share Document