scholarly journals Video: Salt fingers in double diffusive convection bounded by two parallel plates

Author(s):  
Yantao Yang ◽  
Erwin P. van der Poel ◽  
Rodolfo Ostilla-Monico ◽  
Chao Sun ◽  
Roberto Verzicco ◽  
...  
2015 ◽  
Vol 768 ◽  
pp. 476-491 ◽  
Author(s):  
Yantao Yang ◽  
Erwin P. van der Poel ◽  
Rodolfo Ostilla-Mónico ◽  
Chao Sun ◽  
Roberto Verzicco ◽  
...  

The double diffusive convection between two parallel plates is numerically studied for a series of parameters. The flow is driven by the salinity difference and stabilised by the thermal field. Our simulations are directly compared with experiments by Hage & Tilgner (Phys. Fluids, vol. 22, 2010, 076603) for several sets of parameters and reasonable agreement is found. This, in particular, holds for the salinity flux and its dependence on the salinity Rayleigh number. Salt fingers are present in all simulations and extend through the entire height. The thermal Rayleigh number seems to have a minor influence on the salinity flux but affects the Reynolds number and the morphology of the flow. In addition to the numerical calculation, we apply the Grossmann–Lohse theory for Rayleigh–Bénard flow to the present problem without introducing any new coefficients. The theory successfully predicts the salinity flux both with respect to the scaling and even with respect to the absolute value for the numerical and experimental results.


2008 ◽  
Vol 65 (3) ◽  
pp. 1095-1097 ◽  
Author(s):  
David M. Schultz ◽  
Adam J. Durant ◽  
Jerry M. Straka ◽  
Timothy J. Garrett

Abstract Doswell has proposed a mechanism for mammatus called double-diffusive convection, the mechanism responsible for salt fingers in the ocean. The physics of salt fingers and mammatus are different. Unlike the ocean where the diffusivity is related to molecular motions within solution, the hydrometeors in clouds are affected by inertial and gravitational forces. Doswell misinterprets the vertical temperature profiles through mammatus and fails to understand the role of settling in volcanic ash clouds. Furthermore, given that mixing is a much more effective means of transferring heat in the atmosphere and given idealized numerical model simulations of mammatus showing that the destabilizing effect of subcloud sublimation is an effective mechanism for mammatus, this reply argues that double-diffusive convection is unlikely to explain mammatus, either in cumulonimbus anvils or in volcanic ash clouds.


2016 ◽  
Vol 802 ◽  
pp. 667-689 ◽  
Author(s):  
Yantao Yang ◽  
Roberto Verzicco ◽  
Detlef Lohse

Direct numerical simulations are conducted for double diffusive convection (DDC) bounded by two parallel plates. The Prandtl numbers, i.e. the ratios between the viscosity and the molecular diffusivities of scalars, are similar to the values of seawater. The DDC flow is driven by an unstable salinity difference (here across the two plates) and stabilized at the same time by a temperature difference. For these conditions the flow can be in the finger regime. We develop scaling laws for three key response parameters of the system: the non-dimensional salinity flux $\mathit{Nu}_{S}$ mainly depends on the salinity Rayleigh number $\mathit{Ra}_{S}$, which measures the strength of the salinity difference and exhibits a very weak dependence on the density ratio $\unicode[STIX]{x1D6EC}$, which is the ratio of the buoyancy forces induced by two scalar differences. The non-dimensional flow velocity $Re$ and the non-dimensional heat flux $\mathit{Nu}_{T}$ are dependent on both $\mathit{Ra}_{S}$ and $\unicode[STIX]{x1D6EC}$. However, the rescaled Reynolds number $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ and the rescaled convective heat flux $(\mathit{Nu}_{T}-1)\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{T}^{eff}}$ depend only on $\mathit{Ra}_{S}$. The two exponents are dependent on the fluid properties and are determined from the numerical results as $\unicode[STIX]{x1D6FC}_{u}^{eff}=0.25\pm 0.02$ and $\unicode[STIX]{x1D6FC}_{T}^{eff}=0.75\pm 0.03$. Moreover, the behaviours of $\mathit{Nu}_{S}$ and $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ agree with the predictions of the Grossmann–Lohse theory which was originally developed for the Rayleigh–Bénard flow. The non-dimensional salt-finger width and the thickness of the velocity boundary layers, after being rescaled by $\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}/2}$, collapse and obey a similar power-law scaling relation with $\mathit{Ra}_{S}$. When $\mathit{Ra}_{S}$ is large enough, salt fingers do not extend from one plate to the other and horizontal zonal flows emerge in the bulk region. We then show that the current scaling strategy can be successfully applied to the experimental results of a heat–copper–ion system (Hage & Tilgner, Phys. Fluids, vol. 22, 2010, 076603). The fluid has different properties and the exponent $\unicode[STIX]{x1D6FC}_{u}^{eff}$ takes a different value $0.54\pm 0.10$.


1982 ◽  
Vol 116 ◽  
pp. 363-378 ◽  
Author(s):  
Sivagnanam Thangam ◽  
Abdelfattah Zebib ◽  
C. F. Chen

The nonlinear double-diffusive convection in a Boussinesq fluid with stable constant vertical solute gradient, and bound by two differentially heated rigid inclined parallel plates is considered. The analysis was carried out by a Galerkin method for the cases when the angle of inclination was 0°, −45° and +45° (positive angle denotes heating from below, and negative angle denotes heating from above). The counter-rotating cells predicted by the linear theory merge into single cells with the same sense of rotation within a very short period of time even under slightly supercritical conditions. This is consistent with the experimental observations. Furthermore, as observed in the experiments, the evolution of instability is more rapid when heating is from above than when heating is from below. Our results for a salt-heat system are in excellent agreement with those based on the limiting case of Lewis number → 0 and Schmidt number → ∞.


2012 ◽  
Vol 692 ◽  
pp. 1-4 ◽  
Author(s):  
R. W. Schmitt

AbstractSalt fingers are a form of double-diffusive convection that can occur in a wide variety of fluid systems, ranging from stellar interiors and oceans to magma chambers. Their amplitude has long been difficult to quantify, and a variety of mechanisms have been proposed. Radko & Smith (J. Fluid Mech., this issue, vol. 692, 2012, pp. 5–27) have developed a new theory that balances the basic growth rate with that of secondary instabilities that act on the finite amplitude fingers. Their approach promises a way forward for computationally challenging systems with vastly different scales of decay for momentum, heat and dissolved substances.


Sign in / Sign up

Export Citation Format

Share Document