Quantum-mechanical phase space: A generalization of Wigner phase-space formulation to arbitrary coordinate systems

1988 ◽  
Vol 38 (12) ◽  
pp. 6046-6054 ◽  
Author(s):  
Ashok Pimpale ◽  
M. Razavy
2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Sadollah Nasiri ◽  
Samira Bahrami

Here we use the extended phase space formulation of quantum statistical mechanics proposed in an earlier work to define an extended lagrangian for Wigner's functions (WFs). The extended action defined by this lagrangian is a function of ordinary phase space variables. The reality condition of WFs is employed to quantize the extended action. The energy quantization is obtained as a direct consequence of the quantized action. The technique is applied to find the energy states of harmonic oscillator, particle in the box, and hydrogen atom as the illustrative examples.


2020 ◽  
Vol 53 (50) ◽  
pp. 505305
Author(s):  
Diego Gonzalez ◽  
Daniel Gutiérrez-Ruiz ◽  
J David Vergara

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 290 ◽  
Author(s):  
Ivan Agullo ◽  
Javier Olmedo ◽  
Vijayakumar Sreenath

This paper presents a computational algorithm to derive the theory of linear gauge invariant perturbations on anisotropic cosmological spacetimes of the Bianchi I type. Our code is based on the tensor algebra packages xTensor and xPert, within the computational infrastructure of xAct written in Mathematica. The algorithm is based on a Hamiltonian, or phase space formulation, and it provides an efficient and transparent way of isolating the gauge invariant degrees of freedom in the perturbation fields and to obtain the Hamiltonian generating their dynamics. The restriction to Friedmann–Lemaître–Robertson–Walker spacetimes is straightforward.


2018 ◽  
Vol 32 (25) ◽  
pp. 1850276 ◽  
Author(s):  
Ludmila Praxmeyer ◽  
Konstantin G. Zloshchastiev

The Wigner–Weyl transform and phase space formulation of a density matrix approach are applied to a non-Hermitian model which is quadratic in positions and momenta. We show that in the presence of a quantum environment or reservoir, mean lifetime and decay constants of quantum systems do not necessarily take arbitrary values, but could become functions of energy eigenvalues and have a discrete spectrum. It is demonstrated also that a constraint upon mean lifetime and energy appears, which is used to derive the resonance conditions at which long-lived states occur. The latter indicate that quantum dissipative effects do not always lead to decay but, under certain conditions, can support stability of a system.


1997 ◽  
Vol 12 (31) ◽  
pp. 5625-5637 ◽  
Author(s):  
Anisur Rahaman

A new generalization of the vector Schwinger model is considered where gauge symmetry is broken at the quantum mechanical level. By proper extension of the phase space this broken symmetry has been restored in two different ways. One of these two leads to a BRST-invariant effective action. An equivalent gauge-invariant theory is reformulated even in the usual phase space also.


2006 ◽  
Vol 13 (01) ◽  
pp. 67-74 ◽  
Author(s):  
Dariusz Chruściński

We propose a new formula for the adiabatic Berry phase which is based on phase-space formulation of quantum mechanics. This approach sheds a new light onto the correspondence between classical and quantum adiabatic phases — both phases are related with the averaging procedure: Hannay angle with averaging over the classical torus and Berry phase with averaging over the entire classical phase space with respect to the corresponding Wigner function.


Sign in / Sign up

Export Citation Format

Share Document