Time-dependent transition rates for a multilevel quantum system stochastically coupled to a thermal bath

1989 ◽  
Vol 39 (7) ◽  
pp. 3653-3659 ◽  
Author(s):  
S. Velasco ◽  
J. A. White ◽  
A. Calvo Hernández
Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 99
Author(s):  
Vladimir Akulin

In the framework of an exactly soluble model, one considers a typical problem of the interaction between radiation and matter: the dynamics of population in a multilevel quantum system subject to a time dependent perturbation. The algebraic structure of the model is taken richly enough, such that there exists a strong argument in favor of the fact that the behavior of the system in the asymptotic of long time has a universal character, which is system-independent and governed by the functional property of the time dependence exclusively. Functional properties of the excitation time dependence, resulting in the regimes of resonant excitation, random walks, and dynamic localization, are identified. Moreover, an intermediate regime between the random walks and the localization is identified for the polyharmonic excitation at frequencies given by the Liouville numbers.


2011 ◽  
Vol 83 (6) ◽  
Author(s):  
D. O. Soares-Pinto ◽  
M. H. Y. Moussa ◽  
J. Maziero ◽  
E. R. deAzevedo ◽  
T. J. Bonagamba ◽  
...  

2016 ◽  
Vol 93 (8) ◽  
Author(s):  
J. P. Lee ◽  
A. J. Bennett ◽  
J. Skiba-Szymanska ◽  
D. J. P. Ellis ◽  
I. Farrer ◽  
...  

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Huabing Cai

AbstractThis paper investigates the stimulated transition process of a uniformly moving atom in interaction with a thermal bath of the quantum electromagnetic field. Using the perturbation theory, the atomic stimulated emission and absorption rates are calculated. The results indicate that the atomic transition rates depend crucially on the atomic velocity, the temperature of the thermal bath, and the atomic polarizability. As these factors change, the atomic stimulated transition processes can be enhanced or weakened at different degrees. In particular, slowly moving atoms in the thermal bath with high temperature ($$T\gg \omega _{0}$$ T ≫ ω 0 ) perceive a smaller effective temperature $$T \big ( 1-\frac{1}{10} v^{2} \big )$$ T ( 1 - 1 10 v 2 ) for the polarizability perpendicular to the atomic velocity or $$T \big ( 1-\frac{3}{10} v^{2} \big )$$ T ( 1 - 3 10 v 2 ) for the polarizability parallel to the atomic velocity. However, ultra-relativistic atoms perceive no influence of the background thermal bath. In turn, in terms of the atomic transition rates, this paper explores and examines the relativity of temperature of the quantum electromagnetic field.


2020 ◽  
Vol 18 (06) ◽  
pp. 2050030
Author(s):  
Satoya Imai

The hydrodynamic representation of quantum mechanics describes virtual flow as if a quantum system were fluid in motion. This formulation illustrates pointlike vortices when the phase of a wavefunction becomes nonintegrable at nodal points. We study the dynamics of such pointlike vortices in the hydrodynamic representation for a two-particle wavefunction. In particular, we discuss how quantum entanglement influences vortex–vortex dynamics. For this purpose, we employ the time-dependent quantum variational principle combined with the Rayleigh–Ritz method. We analyze the vortex dynamics and establish connections with Dirac’s generalized Hamiltonian formalism.


Sign in / Sign up

Export Citation Format

Share Document