Statistical properties of resonances in two-dimensional quantum-mechanical point scattering

1992 ◽  
Vol 46 (9) ◽  
pp. 6056-6058 ◽  
Author(s):  
Ralf Gawlista ◽  
Petr Šeba
1975 ◽  
Vol 57 (5) ◽  
pp. 417-421 ◽  
Author(s):  
H. Massmann ◽  
P. Ring ◽  
J.O. Rasmussen

1967 ◽  
Vol 57 (1) ◽  
pp. 83-90
Author(s):  
J. A. Hudson ◽  
L. Knopoff

abstract The two-dimensional problems of the scattering of harmonic body waves and Rayleigh waves by topographic irregularities in the surface of a simplified model of the earth are considered with especial reference to the processes of P-R, SV-R and R-R scattering. The topography is assumed to have certain statistical properties; the scattered surface waves also have describable statistical properties. The results obtained show that the maximum scattered seismic noise is in the range of wavelengths of the order of the lateral dimensions of the topography. The process SV-R is maximized over a broader band of wavelengths than the process P-R and thus the former may be more difficult to remove by selective filtering. An investigation of the process R-R shows that backscattering is much more important than forward scattering and hence topography beyond the array must be taken into account.


1979 ◽  
Vol 50 ◽  
pp. 30-1-30-6
Author(s):  
Claude Aime

AbstractMichelson,one-dimensional, and two-dimensional apertures are used to obtain the statistical properties of the solar granulation. The calibration of the power spectrum is performed via Michelson stellar interferometry as well as by the use of changes in seeing conditions during speckle-interferometric measurements. The correction of 40 analyses, determined with Fried's parameter ro ranging between 2.5 cm and 11.5 cm, provides satisfactory convergence for frequencies up to 3 cycles per arc second


Sign in / Sign up

Export Citation Format

Share Document