scholarly journals Manipulating the critical temperature for the superfluid phase transition in trapped atomic Fermi gases

2002 ◽  
Vol 65 (6) ◽  
Author(s):  
C. P. Search ◽  
H. Pu ◽  
W. Zhang ◽  
B. P. Anderson ◽  
P. Meystre
Nature ◽  
2006 ◽  
Vol 442 (7098) ◽  
pp. 54-58 ◽  
Author(s):  
Martin W. Zwierlein ◽  
Christian H. Schunck ◽  
André Schirotzek ◽  
Wolfgang Ketterle

2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Michal Dančo ◽  
Michal Hnatič ◽  
Tomáš Lučivjanský ◽  
Lukáš Mižišin

1998 ◽  
Vol 12 (29n31) ◽  
pp. 3216-3219 ◽  
Author(s):  
M. Ausloos ◽  
S. Dorbolo

A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2T c where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.


1989 ◽  
Vol 177 ◽  
Author(s):  
R. F. Bruinsma ◽  
C. R. Safinya

ABSTRACTWe discuss the effect of shear flow on the nematic to smectic A phase transition. The non-Newtonian flow properties (shear thinning and normal stress) ire correlated with the distortions of the structure-factor S(q). As a function of the Deborah number, we find first a deformation of S(q) and, beyond a critical Deborah number, highly distorted, one-dimensional fluctuations. The suppression of fluctuations by shear flow raises the critical temperature.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Jun-Wang Lu ◽  
Ya-Bo Wu ◽  
Bao-Ping Dong ◽  
Yu Zhang

AbstractAt the probe approximation, we construct a holographic p-wave conductor/superconductor model in the five-dimensional Lifshitz black hole with the Weyl correction via both numerical and analytical methods, and study the effects of the Lifshitz parameter z as well as the Weyl parameter $$\gamma $$ γ on the superconductor model. As we take into account one of the two corrections separately, the increasing z ($$\gamma $$ γ ) inhibits(enhances) the superconductor phase transition. When the two corrections are considered comprehensively, they display the obviously competitive effects on both the critical temperature and the vector condensate. In particular, the promoting effects of the Weyl parameter $$\gamma $$ γ on the critical temperature are obviously suppressed by the increasing Lifshitz parameter. Meanwhile, in the case of $$z<2.35$$ z < 2.35 ($$z>2.35$$ z > 2.35 ), the condensate at lower temperature decreases(increases) with the increasing Weyl parameter $$\gamma $$ γ . What is more, the difference among the condensate with the fixed Weyl parameter($$\gamma =-\frac{6}{100},0,\frac{4}{100}$$ γ = - 6 100 , 0 , 4 100 ) decreases(increases) with the increasing Lifshitz parameter z in the region $$z<2.35$$ z < 2.35 ($$z>2.35$$ z > 2.35 ). Furthermore, the increasing z obviously suppresses the real part of conductivity for all value of the Weyl parameter $$\gamma $$ γ . In addition, the analytical results agree well with the ones from the numerical method.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Jun-Wang Lu ◽  
Ya-Bo Wu ◽  
Li-Gong Mi ◽  
Hao Liao ◽  
Bao-Ping Dong

Abstract Via both numerical and analytical methods, we build the holographic s-wave insulator/superconductor model in the five-dimensional AdS soliton with the Horndeski correction in the probe limit and study the effects of Horndeski parameter k on the superconductor model. For the fixed mass squared of the scalar field ($$m^2$$m2), the critical chemical potential $$\mu _c$$μc increases with the larger Horndeski parameter k, which means that the increasing Horndeski correction hinders the superconductor phase transition. Meanwhile, above the critical chemical potential, the obvious pole arises in the low frequency of the imaginal part of conductivity, which signs the appearance of superconducting state. What is more, the energy of quasiparticle excitation decreases with the larger Horndeski correction. Furthermore, the critical exponent of the condensate (charge density) is $$\frac{1}{2}$$12 (1), which is independent of the Horndeski correction. In addition, the analytical results agree well with the numerical results. Subsequently, the conductor/superconductor model with Horndeski correction is analytically realized in the four- and five-dimensional AdS black holes. It is observed that the increasing Horndeski correction decreases the critical temperature and thus hinders the superconductor phase transition, which agrees with the numerical result in the previous works.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1725-1729
Author(s):  
R. S. COSTA ◽  
S. B. DUARTE ◽  
M. CHIAPPARINI ◽  
T. MENDES

In this work we study the spectrum of the lowest screening masses for Yang–Mills theories on the lattice. We used the SU(2) gauge group in (3 + 1) dmensions. We adopted the multiple exponential method and the so-called "variational" method, in order to detect possible excited states. The calculations were done near the critical temperature of the confinement-deconfinement phase transition. We obtained values for the ratios of the screening masses consistent with predictions from universality arguments. A Monte Carlo evolution of the screening masses in the gauge theory confirms the validity of the predictions.


Sign in / Sign up

Export Citation Format

Share Document