quasiparticle excitation
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Kaiyuan Cao ◽  
Ming Zhong ◽  
Peiqing Tong

Abstract We study the dynamical quantum phase transitions (DQPTs) in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench. Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form $H=\sum_{k}\varepsilon_{k}(\eta^†_{k}\eta_{k}-\frac{1}{2})$, where the quasiparticle excitation spectra $\varepsilon_{k}$ may be smaller than 0 for some $k$ and are asymmetrical ($\varepsilon_{k}\neq\varepsilon_{-k}$). It's found that the factors of Loschmidt echo equal 1 for some $k$ corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfying $\varepsilon_{k}\cdot\varepsilon_{-k}<0$, when the quench is from the gapless phase. By considering the quench from different ground states, we obtain the conditions for the occurrence of DQPTs for the general XY chains with gapless phase, and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase. This is different from the DQPTs in the case of quench from the gapped phase to gapped phase, in which the DQPTs will always appear. Besides, we also analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase. The conclusion can also be extended to the general quantum spin chains.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Jun-Wang Lu ◽  
Ya-Bo Wu ◽  
Li-Gong Mi ◽  
Hao Liao ◽  
Bao-Ping Dong

Abstract Via both numerical and analytical methods, we build the holographic s-wave insulator/superconductor model in the five-dimensional AdS soliton with the Horndeski correction in the probe limit and study the effects of Horndeski parameter k on the superconductor model. For the fixed mass squared of the scalar field ($$m^2$$m2), the critical chemical potential $$\mu _c$$μc increases with the larger Horndeski parameter k, which means that the increasing Horndeski correction hinders the superconductor phase transition. Meanwhile, above the critical chemical potential, the obvious pole arises in the low frequency of the imaginal part of conductivity, which signs the appearance of superconducting state. What is more, the energy of quasiparticle excitation decreases with the larger Horndeski correction. Furthermore, the critical exponent of the condensate (charge density) is $$\frac{1}{2}$$12 (1), which is independent of the Horndeski correction. In addition, the analytical results agree well with the numerical results. Subsequently, the conductor/superconductor model with Horndeski correction is analytically realized in the four- and five-dimensional AdS black holes. It is observed that the increasing Horndeski correction decreases the critical temperature and thus hinders the superconductor phase transition, which agrees with the numerical result in the previous works.


2020 ◽  
Vol 34 (19n20) ◽  
pp. 2040053
Author(s):  
Shuning Tan ◽  
Yingping Mou ◽  
Yiqun Liu ◽  
Shiping Feng

Within the framework of the kinetic energy-driven superconductivity, the complicated line shape in the electron quasiparticle excitation spectrum of the electron-doped cuprate superconductors is studied. It is shown that as in the hole-doped counterparts, the momentum and energy dependence of the quasiparticle scattering rate in the electron-doped cuprate superconductors has a well-pronounced peak structure at around the antinodal and nodal regions. However, this peak structure is absent from the hot spots. This special momentum and energy dependence of the quasiparticle scattering rate therefore generates a remarkable peak-dip-hump structure in the electron quasiparticle excitation spectrum of the electron-doped cuprate superconductors at around the antinodal and nodal regions except for at around the hot spots, where the peak-dip-hump structure is absent. The theory also indicates that there is a common physical origin for the peak-dip-hump structure both in the hole- and electron-doped cuprate superconductors.


2015 ◽  
Vol 29 (19) ◽  
pp. 1550096 ◽  
Author(s):  
Mikhail B. Belonenko ◽  
Natalia N. Konobeeva ◽  
Elena N. Galkina

Dynamics of few cycle optical pulses in non-Fermi liquid was considered. Energy spectrum of non-Fermi liquid was taken from the AdS/CFT correspondence. Conditions of quasiparticle excitation existence were defined. Non-Fermi liquid parameters impact on the shape of few cycle pulses were estimated.


2012 ◽  
Vol 26 (29) ◽  
pp. 1250144
Author(s):  
N. KRISTOFFEL ◽  
P. RUBIN

The pseudogap (PG) excitation is analyzed as a natural event in multiband superconductivity. It corresponds to minimal quasiparticle excitation energy of an electron band not touched by the chemical potential. The critical points of the phase diagram are determined by vanishing conditions for normal state pseudogaps (NPG). For two bands (gapped or overlapping) these are positioned on edges of the superconducting dome. Theoretical background for a three-band system with two interband pairing channels is developed. There are three independent superconducting gaps (SCG). The PG is associated with the band component possessing a bare gap which can be quenched by doping. At low doping the PG and the SCG of another band component coexist. The critical point is not fixed in respect of the transition temperature (Tc) dome background. The depletion of the PG associated states is restored here. This effect can also be indirect by the participation of these states in determining the chemical potential position. At the critical point the PG looses its normal state contribution and continues as the SCG of the same band. Illustrative examples on the doping scale have been calculated.


Sign in / Sign up

Export Citation Format

Share Document