scholarly journals Stabilization of the number of Bose-Einstein-condensed atoms in evaporative cooling via three-body recombination loss

2003 ◽  
Vol 68 (6) ◽  
Author(s):  
Makoto Yamashita ◽  
Tetsuya Mukai
2004 ◽  
Vol 92 (14) ◽  
Author(s):  
Chris P. Search ◽  
Weiping Zhang ◽  
Pierre Meystre

2011 ◽  
Vol 84 (3) ◽  
Author(s):  
Takahiko Shobu ◽  
Hironobu Yamaoka ◽  
Hiromitsu Imai ◽  
Atsuo Morinaga ◽  
Makoto Yamashita

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
T. Secker ◽  
J.-L. Li ◽  
P. M. A. Mestrom ◽  
S. J. J. M. F. Kokkelmans

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuyang Zhou ◽  
Yizhi Qu ◽  
Junwen Gao ◽  
Yulong Ma ◽  
Yong Wu ◽  
...  

AbstractAn ion embedded in warm/hot dense plasmas will greatly alter its microscopic structure and dynamics, as well as the macroscopic radiation transport properties of the plasmas, due to complicated many-body interactions with surrounding particles. Accurate theoretically modeling of such kind of quantum many-body interactions is essential but very challenging. In this work, we propose an atomic-state-dependent screening model for treating the plasmas with a wide range of temperatures and densities, in which the contributions of three-body recombination processes are included. We show that the electron distributions around an ion are strongly correlated with the ionic state studied due to the contributions of three-body recombination processes. The feasibility and validation of the proposed model are demonstrated by reproducing the experimental result of the line-shift of hot-dense plasmas as well as the classical molecular dynamic simulations of moderately coupled ultra-cold neutral plasmas. Our work opens a promising way to treat the screening effect of hot and warm dense plasma, which is a bottleneck of those extensive studies in high-energy-density physics, such as atomic processes in plasma, plasma spectra and radiation transport properties, among others.


2011 ◽  
Vol 375 (48) ◽  
pp. 4288-4295 ◽  
Author(s):  
Etienne Wamba ◽  
Alidou Mohamadou ◽  
Thierry B. Ekogo ◽  
Jacque Atangana ◽  
Timoleon C. Kofane

Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Hiroyuki Tajima ◽  
Junichi Takahashi ◽  
Simeon Mistakidis ◽  
Eiji Nakano ◽  
Kei Iida

The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.


Sign in / Sign up

Export Citation Format

Share Document