scholarly journals Three-body recombination calculations with a two-body mapped grid method

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
T. Secker ◽  
J.-L. Li ◽  
P. M. A. Mestrom ◽  
S. J. J. M. F. Kokkelmans
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuyang Zhou ◽  
Yizhi Qu ◽  
Junwen Gao ◽  
Yulong Ma ◽  
Yong Wu ◽  
...  

AbstractAn ion embedded in warm/hot dense plasmas will greatly alter its microscopic structure and dynamics, as well as the macroscopic radiation transport properties of the plasmas, due to complicated many-body interactions with surrounding particles. Accurate theoretically modeling of such kind of quantum many-body interactions is essential but very challenging. In this work, we propose an atomic-state-dependent screening model for treating the plasmas with a wide range of temperatures and densities, in which the contributions of three-body recombination processes are included. We show that the electron distributions around an ion are strongly correlated with the ionic state studied due to the contributions of three-body recombination processes. The feasibility and validation of the proposed model are demonstrated by reproducing the experimental result of the line-shift of hot-dense plasmas as well as the classical molecular dynamic simulations of moderately coupled ultra-cold neutral plasmas. Our work opens a promising way to treat the screening effect of hot and warm dense plasma, which is a bottleneck of those extensive studies in high-energy-density physics, such as atomic processes in plasma, plasma spectra and radiation transport properties, among others.


2012 ◽  
Vol 392 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Dmitrii B. Kabanov ◽  
Lev Yu. Rusin

2008 ◽  
Vol 113 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Dušan A. Pejaković ◽  
Konstantinos S. Kalogerakis ◽  
Richard A. Copeland ◽  
David L. Huestis

Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Nicholas L. Wong ◽  
Fergal O’Reilly ◽  
Emma Sokell

Plasmas of a variety of types can be described by the collisional radiative (CR) model developed by Colombant and Tonan. From the CR model, the ion distribution of a plasma at a given electron temperature and density can be found. This information is useful for further simulations, and due to this, the employment of a suitable CR model is important. Specifically, ionization bottlenecks, where there are enhanced populations of certain charge states, can be seen in these ion distributions, which in some applications are important in maintaining large amounts of a specific ion. The present work was done by implementing an accepted CR model, proposed by Colombant and Tonon, in Python and investigating the effects of variations in the ionization energy and outermost electron subshell occupancy term on the positions of ionization bottlenecks. Laser Produced Plasmas created using a Nd:YAG laser with an electron density of ∼ne = 1021 cm−3 were the focus of this work. Plots of the collisional ionization, radiative recombination, and three-body recombination rate coefficients as well as the ion distribution and peak fractional ion population for various elements were examined. From these results, it is evident that using ionization energies from the NIST database and removing the orbital occupancy term in the CR model produced results with ionization bottlenecks in expected locations.


Sign in / Sign up

Export Citation Format

Share Document