scholarly journals Density fluctuations of a hard-core Bose gas in a one-dimensional lattice near the Mott insulating phase

2005 ◽  
Vol 71 (6) ◽  
Author(s):  
C. Ates ◽  
Ch. Moseley ◽  
K. Ziegler
2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Jacopo De Nardis ◽  
Milosz Panfil ◽  
Andrea Gambassi ◽  
Leticia Cugliandolo ◽  
Robert Konik ◽  
...  

Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained for the Bose gas in one spatial dimension by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.


1997 ◽  
Vol 12 (29) ◽  
pp. 2153-2159 ◽  
Author(s):  
Milena Maule ◽  
Stefano Sciuto

We show that the low-lying excitations of the one-dimensional Bose gas are described, at all orders in a 1/N expansion and at the first order in the inverse of the coupling constant, by an effective Hamiltonian written in terms of an extended conformal algebra, namely the Cartan subalgebra of the [Formula: see text] algebra. This enables us to construct the first interaction term which corrects the Hamiltonian of the free fermions equivalent to a hard-core boson system.


2002 ◽  
Vol 14 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Miki Wadati ◽  
Go Kato
Keyword(s):  
Bose Gas ◽  

2006 ◽  
Vol 20 (32) ◽  
pp. 5443-5462 ◽  
Author(s):  
TARUN KANTI GHOSH

We analytically study effects of density and phase fluctuations of quasi-one-dimensional degenerate atomic Bose gases in the mean-field as well as in the hard-core bosons regimes. We obtain the analytic expressions for dynamic structure factors in both the regimes. We also calculate single-particle density matrix and momentum distribution by taking care of the phase fluctuations upto fourth-order term, the density fluctuations as well as the non-condensate density in both the regimes. In the mean-field regime, there is a long-tail in the momentum distributions at large temperature, which can be used to identify the quasi-condensate from a pure condensate. The single-particle correlation functions of hard-core bosons is almost zero even at zero temperature due to the fermionization of the bosonic systems. Two-particle correlation function in the hard-core bosons regime shows many deep valleys at various relative separations. These valleys at various relative separations imply shell structure due to the Pauli blocking in real space.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Rahul Dandekar ◽  
Subhadip Chakraborti ◽  
R. Rajesh

Sign in / Sign up

Export Citation Format

Share Document