scholarly journals Quantum memory scheme based on optical fibers and cavities

2006 ◽  
Vol 74 (2) ◽  
Author(s):  
Patrick M. Leung ◽  
Timothy C. Ralph
2015 ◽  
Vol 15 (11&12) ◽  
pp. 1017-1040
Author(s):  
Hendra I. Nurdin ◽  
John E. Gough

In this paper, we show that quantum memory for qudit states encoded in a single photon pulsed optical field has a conceptually simple modular realization using only passive linear optics and coherent feedback. We exploit the idea that two decaying optical cavities can be coupled in a coherent feedback configuration to create an internal mode of the coupled system which is isolated and decoherence-free for the purpose of qubit storage. The qubit memory can then be switched between writing/read-out mode and storage mode simply by varying the routing of certain freely propagating optical fields in the network. It is then shown that the qubit memories can be interconnected with one another to form a qudit quantum memory. We explain each of the phase of writing, storage, and read-out for this modular quantum memory scheme. The results point a way towards modular architectures for complex compound quantum memories.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu Ma ◽  
You-Zhi Ma ◽  
Zong-Quan Zhou ◽  
Chuan-Feng Li ◽  
Guang-Can Guo

AbstractPhoton loss in optical fibers prevents long-distance distribution of quantum information on the ground. Quantum repeater is proposed to overcome this problem, but the communication distance is still limited so far because of the system complexity of the quantum repeater scheme. Alternative solutions include transportable quantum memory and quantum-memory-equipped satellites, where long-lived optical quantum memories are the key components to realize global quantum communication. However, the longest storage time of the optical memories demonstrated so far is approximately 1 minute. Here, by employing a zero-first-order-Zeeman magnetic field and dynamical decoupling to protect the spin coherence in a solid, we demonstrate coherent storage of light in an atomic frequency comb memory over 1 hour, leading to a promising future for large-scale quantum communication based on long-lived solid-state quantum memories.


2008 ◽  
Vol 78 (4) ◽  
Author(s):  
O. S. Mishina ◽  
N. V. Larionov ◽  
A. S. Sheremet ◽  
I. M. Sokolov ◽  
D. V. Kupriyanov

2022 ◽  
Vol 19 (2) ◽  
pp. 025202
Author(s):  
E A Vashukevich ◽  
E N Bashmakova ◽  
T Yu Golubeva ◽  
Yu M Golubev

Abstract The application of high-dimensional quantum systems (qudits) in quantum computing and communications seems to be a promising avenue due to the possibility of increasing the amount of information encoded in one physical carrier. In this work, we propose a method for implementing single-qudit gates for qudits based on light modes with orbital angular momentum (OAM). Method for logical qudits encoding, which ensures the quasi-cyclicity of operations, is introduced. Based on the protocol for converting the OAM of light in the Raman quantum memory scheme (Vashukevich et al 2020 Phys. Rev. A 101 033830), we show that the considered gates provide an extremely high level of fidelity of single-qudit transformations. We also compare quantum gates’ properties for systems of different dimensions and find the optimal conditions for carrying out transformations in the protocol under consideration.


2018 ◽  
Author(s):  
M. M. Minnegaliev ◽  
K. I. Gerasimov ◽  
R. V. Urmancheev ◽  
S. A. Moiseev ◽  
T. Chanelière ◽  
...  

2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


Author(s):  
Werner Daum ◽  
Jürgen Krauser ◽  
Peter E. Zamzow ◽  
Olaf Ziemann

2012 ◽  
Vol E95.B (8) ◽  
pp. 2638-2641 ◽  
Author(s):  
Makoto YAMADA ◽  
Akisumi TOMOE ◽  
Takahiro KINOSHITA ◽  
Osanori KOYAMA ◽  
Yutaka KATUYAMA ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document