POF — Polymer Optical Fibers for Data Communication

Author(s):  
Werner Daum ◽  
Jürgen Krauser ◽  
Peter E. Zamzow ◽  
Olaf Ziemann
2019 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Malwina Julita Niedźwiedź ◽  
Małgorzata Gil ◽  
Mateusz Gargol ◽  
Wiesław Marian Podkościelny ◽  
Paweł Mergo

The aim of this work was to determine optimal extrusion temperature for polymer optical fibers. For preliminary studies poly(methyl methacrylate) (PMMA) granulate was used. Samples of commercially available PMMA were subjected to four different temperatures in which were kept in oven for three different period of time. To examine the changes in the chemical structure of the polymer, an ATR-FT-IR (Attenuation Total Reflection Fourier Transform Infrared Spectroscopy) was chosen. Full Text: PDF ReferencesK. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct. 20, 013002 (2011) CrossRef O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, "POF Polymer Optical Fibers for Data Communication" (New York, Springer-Verlag Berlin Heidelberg 2002). CrossRef M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C. Martijn de Sterke, N.A.P. Nicorovici, "Microstructured polymer optical fibre", Opt Express 9, 319 (2001). CrossRef O. Çetinkaya, G. Wojcik, P. Mergo, "Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions", Mater Res Express 5, 1 (2018). CrossRef P. Mergo, M. Gil, K. Skorupski, J. Klimek, G. Wójcik, J. Pędzisz, J. Kopec, K. Poruraj, L. Czyzewska, A. Walewski, A. Gorgol, "Low loss poly(methyl methacrylate) useful in polymer optical fibres technology", Phot. Lett. Poland, 5, 170 (2013). CrossRef J. Grdadolnik, "ATR-FTIR Spectroscopy: Its advantages and limitations", Acta Chim Slov. 49, 631 (2002). DirectLink P. Borowski, S. Pasieczna-Patkowska, M. Barczak, K. Pilorz, "Theoretical Determination of the Infrared Spectra of Amorphous Polymers", J Phys Chem A 116, 7424 (2012). CrossRef G. Socrates, "Infrared and Raman Characteristic Group Frequencies Tables and Charts" Third Edition (Baffins Lane Chichester, John Wiley & Sons Ltd 2001). DirectLink W. Schnabel, Polymer Degradation Principles and Practical Applications (Berlin, Akademie-Verlag 1981). DirectLink


2020 ◽  
Vol 12 (3) ◽  
pp. 79
Author(s):  
Mateusz Łukasz Jóźwicki ◽  
Mateusz Gargol ◽  
Małgorzata Gil-Kowalczyk ◽  
Paweł Mergo

The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF ReferencesO. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. "Solution-mediated cladding doping of commercial polymer optical fibers", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, "Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schlüter, T. Gries, G. Seide, C.-A. Bunge, "6 - Fabrication techniques for polymer optical fibres", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, "Determination of the optimal extrusion temperature of the PMMA optical fibers", Phot. Lett. Poland 11, 7-9 (2019) CrossRef


2021 ◽  
Vol 66 ◽  
pp. 102638
Author(s):  
Andreas Evertz ◽  
Daniel Schrein ◽  
Ejvind Olsen ◽  
Gerd-Albert Hoffmann ◽  
Ludger Overmeyer

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1740
Author(s):  
Konrad Jakubowski ◽  
Manfred Heuberger ◽  
Rudolf Hufenus

The increasing interest in luminescent waveguides, applied as light concentrators, sensing elements, or decorative illuminating systems, is fostering efforts to further expand their functionality. Yarns and textiles based on a combination of distinct melt-spun polymer optical fibers (POFs), doped with individual luminescent dyes, can be beneficial for such applications since they enable easy tuning of the color of emitted light. Based on the energy transfer occurring between differently dyed filaments within a yarn or textile, the collective emission properties of such assemblies are adjustable over a wide range. The presented study demonstrates this effect using multicolor, meltspun, and photoluminescent POFs to measure their superimposed photoluminescent emission spectra. By varying the concentration of luminophores in yarn and fabric composition, the overall color of the resulting photoluminescent textiles can be tailored by the recapturing of light escaping from individual POFs. The ensuing color space is a mean to address the needs of specific applications, such as decorative elements and textile illumination by UV down-conversion.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2667
Author(s):  
Ander Vieira ◽  
Jon Arrue ◽  
Begoña García-Ramiro ◽  
Felipe Jiménez ◽  
María Asunción Illarramendi ◽  
...  

In this paper, useful models that enable time-efficient computational analyses of the performance of luminescent solar concentrators (LSCs) are developed and thoroughly described. These LSCs are based on polymer optical fibers codoped with organic dyes and/or europium chelates. The interest in such dopants lies in the availability of new dyes with higher quantum yields and in the photostability and suitable absorption and emission bands of europium chelates. Time-efficiency without compromising accuracy is especially important for the simulation of europium chelates, in which non-radiative energy transfers from the absorbing ligands to the europium ion and vice versa are so fast that the discretization in time, in the absence of some simplifying assumptions, would have to be very fine. Some available experimental results are also included for the sake of comparison.


2015 ◽  
Vol 27 (6) ◽  
pp. 604-607 ◽  
Author(s):  
Kishore Bhowmik ◽  
Gang-Ding Peng ◽  
Eliathamby Ambikairajah ◽  
Vedran Lovric ◽  
William R. Walsh ◽  
...  

2006 ◽  
Author(s):  
Pasi Vihinen ◽  
Ivan Kassamakov ◽  
Marcus Schorpp ◽  
Heimo Saarikko

2013 ◽  
Author(s):  
Carlos A. F. Marques ◽  
Lúcia Bilro ◽  
David J. Webb ◽  
Rogério N. Nogueira

Sign in / Sign up

Export Citation Format

Share Document