scholarly journals Continuous-variable quantum computation with spatial degrees of freedom of photons

2011 ◽  
Vol 83 (5) ◽  
Author(s):  
D. S. Tasca ◽  
R. M. Gomes ◽  
F. Toscano ◽  
P. H. Souto Ribeiro ◽  
S. P. Walborn
2007 ◽  
Vol 7 (3) ◽  
pp. 184-208
Author(s):  
W. Hall

The cluster state model for quantum computation [Phys. Rev. Lett. \textbf{86}, 5188] outlines a scheme that allows one to use measurement on a large set of entangled quantum systems in what is known as a cluster state to undertake quantum computations. The model itself and many works dedicated to it involve using entangled qubits. In this paper we consider the issue of using entangled qudits instead. We present a complete framework for cluster state quantum computation using qudits, which not only contains the features of the original qubit model but also contains the new idea of adaptive computation: via a change in the classical computation that helps to correct the errors that are inherent in the model, the implemented quantum computation can be changed. This feature arises through the extra degrees of freedom that appear when using qudits. Finally, for prime dimensions, we give a very explicit description of the model, making use of mutually unbiased bases.


2015 ◽  
Vol 91 (3) ◽  
Author(s):  
Kevin Marshall ◽  
Raphael Pooser ◽  
George Siopsis ◽  
Christian Weedbrook

Author(s):  
Edmund B. Weis ◽  
Frank P. Primiano

This report concerns the development of a relationship between the human mechanical impedance and the coupling of the human center of mass to the environment. The mechanical impedance is a common analysis tool in biomechanics while the analysis of the coupling of the center of mass to the environment is technically more difficult, if not impossible. The development is based on linear, passive, isotropic theory and shows that the transfer function which expresses the relation between the motion of the center of mass and the motion of the source is similar to a linear second order mechanical system in each of the translational spatial degrees of freedom.


2016 ◽  
Vol 14 (03) ◽  
pp. 1650011 ◽  
Author(s):  
Yu-Jie Liu ◽  
Li Zheng ◽  
Dong-Mei Han ◽  
Huan-Lin Lü ◽  
Tai-Yu Zheng

We investigate the internal-state Bell nonlocal entanglement dynamics, as measured by CHSH inequality of two atoms interacting with a vacuum multi-mode noise field by taking into account the spatial degrees of freedom of the two atoms. The dynamics of Bell nonlocality of the atoms with the atomic internal states being initially in a Werner-type state is studied, by deriving the analytical solutions of the Schrödinger equation, and tracing over the degrees of freedom of the field and the external motion of the two atoms. In addition, through comparison with entanglement as measured by concurrence, we find that the survival time of entanglement is much longer than that of the Bell-inequality violation. And the comparison of the quantum correlation time between two Werner-type states is discussed.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 329-335 ◽  
Author(s):  
WENMIN ZHANG ◽  
M. Y. YU ◽  
A. R. KARIMOV ◽  
L. STENFLO

AbstractNonlinear coupling of the motion in the three spatial degrees of freedom of a cold fluid electron–positron plasma is investigated. Exact solutions describing expanding flows with oscillations are obtained. It is found that the energy in the irrotational flow component is in general transferred to the rotational components, but not in the reversed direction. Furthermore, since the density evolution need not be related to all the three flow components, oscillations in one or two of the flow fields can be purely electromagnetic and are not accompanied by density oscillations.


Sign in / Sign up

Export Citation Format

Share Document