The Motion of the Human Center of Mass and its Relationship to Mechanical Impedance

Author(s):  
Edmund B. Weis ◽  
Frank P. Primiano

This report concerns the development of a relationship between the human mechanical impedance and the coupling of the human center of mass to the environment. The mechanical impedance is a common analysis tool in biomechanics while the analysis of the coupling of the center of mass to the environment is technically more difficult, if not impossible. The development is based on linear, passive, isotropic theory and shows that the transfer function which expresses the relation between the motion of the center of mass and the motion of the source is similar to a linear second order mechanical system in each of the translational spatial degrees of freedom.

Author(s):  
Mourad Fakhfakh ◽  
Tahar Fakhfakh ◽  
Mourad Loulou ◽  
Mohammed Haddar ◽  
Nouri Masmoudi

In this paper we present a symbolic analysis tool. It uses the directed graph techniques for the automatic modeling, featuring and analysis of dynamic systems. We use the proposed tool to model mechanical system. With the help of the electromechanical analogies, this tool automatically generates symbolic and semi-symbolic transfer function between specified input and output nodes. The performances of the symbolic tool are exemplified for some dynamic systems.


Author(s):  
SD Yu ◽  
BC Wen

This article presents a simple procedure for predicting time-domain vibrational behaviors of a multiple degrees of freedom mechanical system with dry friction. The system equations of motion are discretized by means of the implicit Bozzak–Newmark integration scheme. At each time step, the discontinuous frictional force problem involving both the equality and inequality constraints is successfully reduced to a quadratic mathematical problem or the linear complementary problem with the introduction of non-negative and complementary variable pairs (supremum velocities and slack forces). The so-obtained complementary equations in the complementary pairs can be solved efficiently using the Lemke algorithm. Results for several single degree of freedom and multiple degrees of freedom problems with one-dimensional frictional constraints and the classical Coulomb frictional model are obtained using the proposed procedure and compared with those obtained using other approaches. The proposed procedure is found to be accurate, efficient, and robust in solving non-smooth vibration problems of multiple degrees of freedom systems with dry friction. The proposed procedure can also be applied to systems with two-dimensional frictional constraints and more sophisticated frictional models.


Author(s):  
Debao Li ◽  
Fangze Li ◽  
Peiming Xu

Abstract This paper deals with the dynamic modification simulation of the structure. The expressions of sensitivity analysis of the system with non-proportional damping and proportional damping are derived at first. As for the reanalysis of modified structure, here we deal with the system to which the modification do not cause any change of the degrees of freedom. Transfer function analysis method and the method of twice coordinate transformation are expounded. As a successful example, the modification simulation of the frame of a dump truck is explained.


1971 ◽  
Vol 10 ◽  
pp. 40-51
Author(s):  
Paul E. Nacozy

AbstractThe numerical integration of systems of differential equations that possess integrals is often approached by using the integrals to reduce the number of degrees of freedom or by using the integrals as a partial check on the resulting solution, retaining the original number of degrees of freedom.Another use of the integrals is presented here. If the integrals have not been used to reduce the system, the solution of a numerical integration may be constrained to remain on the integral surfaces by a method that applies corrections to the solution at each integration step. The corrections are determined by using linearized forms of the integrals in a least-squares procedure.The results of an application of the method to numerical integrations of a gravitational system of 25-bodies are given. It is shown that by using the method to satisfy exactly the integrals of energy, angular momentum, and center of mass, a solution is obtained that is more accurate while using less time of calculation than if the integrals are not satisfied exactly. The relative accuracy is ascertained by forward and backward integrations of both the corrected and uncorrected solutions and by comparison with more accurate integrations using reduced step-sizes.


Sign in / Sign up

Export Citation Format

Share Document