scholarly journals Spatial Degrees of Freedom in Everett Quantum Mechanics

2006 ◽  
Vol 36 (8) ◽  
pp. 1115-1159 ◽  
Author(s):  
Mark A. Rubin
1991 ◽  
Vol 253 ◽  
Author(s):  
B. L. Gyorffy

The symmetry properties of the Dirac equation, which describes electrons in relativistic quantum mechanics, is rather different from that of the corresponding Schr6dinger equation. Consequently, even when the velocity of light, c, is much larger than the velocity of an electron Vk, with wave vector, k, relativistic effects may be important. For instance, while the exchange interaction is isotropic in non-relativistic quantum mechanics the coupling between spin and orbital degrees of freedom in relativistic quantum mechanics implies that the band structure of a spin polarized metal depends on the orientation of its magnetization with respect to the crystal axis. As a consequence there is a finite set of degenerate directions for which the total energy of the electrons is an absolute minimum. Evidently, the above effect is the principle mechanism of the magneto crystalline anisotropy [1]. The following session will focus on this and other qualitatively new relativistic effects, such as dichroism at x-ray frequencies [2] or Fano effects in photo-emission from non-polarized solids [3].


Author(s):  
F. Iachello ◽  
R. D. Levine

In the previous chapter we discussed the usual realization of many-body quantum mechanics in terms of differential operators (Schrödinger picture). As in the case of the two-body problem, it is possible to formulate many-body quantum mechanics in terms of algebraic operators. This is done by introducing, for each coordinate r1,r2,... and momentum p1, p2, . . . , boson creation and annihilation operators, b†iα, biα. The index i runs over the number of relevant degrees of freedom, while the index α runs from 1 to n + 1, where n is the number of space dimensions (see note 3 of Chapter 2). The boson operators satisfy the usual commutation relations, which are for i ≠ j, . . . [biα, b†jα´] = 0, [biα, bjα´] = 0,. . . . . .[bjα, b†iα´] = 0, [b†jα, b†iα´] = 0,. . . . . . [biα, b†iα´] = ẟαα´, [biα, b†iα´] = 0, [b†iα, b†iα´] = 0. . . .


2005 ◽  
Vol 02 (04) ◽  
pp. 633-655
Author(s):  
JOSÉ M. ISIDRO

Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kähler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kähler potential.


Author(s):  
Edmund B. Weis ◽  
Frank P. Primiano

This report concerns the development of a relationship between the human mechanical impedance and the coupling of the human center of mass to the environment. The mechanical impedance is a common analysis tool in biomechanics while the analysis of the coupling of the center of mass to the environment is technically more difficult, if not impossible. The development is based on linear, passive, isotropic theory and shows that the transfer function which expresses the relation between the motion of the center of mass and the motion of the source is similar to a linear second order mechanical system in each of the translational spatial degrees of freedom.


2000 ◽  
Vol 15 (18) ◽  
pp. 1203-1212 ◽  
Author(s):  
HITOSHI IKEMORI ◽  
SHINSAKU KITAKADO ◽  
HIDEHARU OTSU ◽  
TOSHIRO SATO

Quantum mechanics on sphere Sn is studied from the viewpoint that the Berry's connection has to appear as a topological term in the effective action. Furthermore we show that this term is the Chern–Simons term of gauge variables that correspond to the extra degrees of freedom of the enlarged space.


2016 ◽  
Vol 14 (03) ◽  
pp. 1650011 ◽  
Author(s):  
Yu-Jie Liu ◽  
Li Zheng ◽  
Dong-Mei Han ◽  
Huan-Lin Lü ◽  
Tai-Yu Zheng

We investigate the internal-state Bell nonlocal entanglement dynamics, as measured by CHSH inequality of two atoms interacting with a vacuum multi-mode noise field by taking into account the spatial degrees of freedom of the two atoms. The dynamics of Bell nonlocality of the atoms with the atomic internal states being initially in a Werner-type state is studied, by deriving the analytical solutions of the Schrödinger equation, and tracing over the degrees of freedom of the field and the external motion of the two atoms. In addition, through comparison with entanglement as measured by concurrence, we find that the survival time of entanglement is much longer than that of the Bell-inequality violation. And the comparison of the quantum correlation time between two Werner-type states is discussed.


2009 ◽  
Vol 06 (01) ◽  
pp. 129-172 ◽  
Author(s):  
JESÚS CLEMENTE-GALLARDO ◽  
GIUSEPPE MARMO

We briefly review the most relevant aspects of complete integrability for classical systems and identify those aspects which should be present in a definition of quantum integrability. We show that a naive extension of classical concepts to the quantum framework would not work because all infinite dimensional Hilbert spaces are unitarilly isomorphic and, as a consequence, it would not be easy to define degrees of freedom. We argue that a geometrical formulation of quantum mechanics might provide a way out.


Sign in / Sign up

Export Citation Format

Share Document