Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

2018 ◽  
Vol 97 (5) ◽  
Author(s):  
Lei Han ◽  
Sheng Liu ◽  
Peng Li ◽  
Yi Zhang ◽  
Huachao Cheng ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Wang ◽  
Yong Ge ◽  
Hong-xiang Sun ◽  
Haoran Xue ◽  
Ding Jia ◽  
...  

AbstractCrystalline materials can host topological lattice defects that are robust against local deformations, and such defects can interact in interesting ways with the topological features of the underlying band structure. We design and implement a three dimensional acoustic Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice defect. The modes are related to topological features of the bulk bands, and carry nonzero orbital angular momentum locked to the direction of propagation. They span a range of axial wavenumbers defined by the projections of two bulk Weyl points to a one-dimensional subspace, in a manner analogous to the formation of Fermi arc surface states. We use acoustic experiments to probe their dispersion relation, orbital angular momentum locked waveguiding, and ability to emit acoustic vortices into free space. These results point to new possibilities for creating and exploiting topological modes in three-dimensional structures through the interplay between band topology in momentum space and topological lattice defects in real space.


2021 ◽  
Author(s):  
Oliver Dowinton ◽  
Mohammad Bahramy

Abstract Orbital angular momentum (OAM) plays a central role in regulating the magnetic state of electrons in non-periodic systems such as atoms and molecules. In solids, on the other hand, OAM is usually quenched by the crystal field, and thus, has a negligible effect on magnetisation. Accordingly, it is generally neglected in discussions around band topology such as Berry curvature (BC) and intrinsic anomalous Hall conductivity (AHC). Here, we present a theoretical framework demonstrating that crystalline OAM can be directionally unquenched in transition metal oxides via energetic proximity of the conducting d electrons to the local magnetic moments. We show that this leads to `composite' Fermi-pockets with topologically non-trivial OAM textures. This enables a giant Berry curvature with an intrinsic non-monotonic AHC, even in collinearly-ordered spin states. We use this model to explain the origin of the giant AHC observed in the forced-ferromagnetic state of EuTiO3 and propose it as a prototype for OAM driven AHC.


2018 ◽  
Vol 98 (4) ◽  
Author(s):  
Ahmed H. Dorrah ◽  
Carmelo Rosales-Guzmán ◽  
Andrew Forbes ◽  
Mo Mojahedi

2020 ◽  
Vol 14 (6) ◽  
pp. 547-550
Author(s):  
Joshua K. Hamilton ◽  
Simon J. Berry ◽  
Joseph H. Spencer ◽  
Christopher R. Lawrence ◽  
Francis C. Smith ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Chen Zhang ◽  
Li Deng ◽  
Wei Jun Hong ◽  
Wei Xiang Jiang ◽  
Jian Feng Zhu ◽  
...  

2014 ◽  
Vol 6 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Rui Li ◽  
Xue Feng ◽  
Dengke Zhang ◽  
Kaiyu Cui ◽  
Fang Liu ◽  
...  

2016 ◽  
Vol 41 (7) ◽  
pp. 1566 ◽  
Author(s):  
Bing Gu ◽  
Bo Wen ◽  
Guanghao Rui ◽  
Yuxiong Xue ◽  
Qiwen Zhan ◽  
...  

2021 ◽  
Vol 11 ◽  
pp. 184798042110151
Author(s):  
Yi Yang ◽  
Siyuan Huang

We numerically demonstrate trapping and rotation of particles using a metasurface formed by arranging nanocavities as a right-handed Archimedes’ spiral. Excited by a 90° linearly polarized beam, a focused surface plasmon polariton (SPP) field is formed at the center of the spiral, and the particle can be trapped by the field. While excited by −45° linearly polarized beams, a vortex SPP field carrying orbital angular momentum is formed, and the particles can be trapped and rotated in the clockwise direction at the vortex field.


Science ◽  
2017 ◽  
Vol 358 (6365) ◽  
pp. 896-901 ◽  
Author(s):  
Robert C. Devlin ◽  
Antonio Ambrosio ◽  
Noah A. Rubin ◽  
J. P. Balthasar Mueller ◽  
Federico Capasso

Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements—SAM-to–orbital angular momentum (OAM) converters—are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication.


Sign in / Sign up

Export Citation Format

Share Document