scholarly journals Erratum: Two-level-atom excitation probability for single- and N -photon wave packets [Phys. Rev. A 96 , 033817 (2017)]

2019 ◽  
Vol 99 (2) ◽  
Author(s):  
Hemlin Swaran Rag ◽  
Julio Gea-Banacloche
2013 ◽  
Vol 22 (03) ◽  
pp. 1350029
Author(s):  
K. V. PRIYESH ◽  
RAMESH BABU THAYYULLATHIL

In this paper we have investigated the dynamics of two cavities each with a two-level atom, coupled together with photon hopping. The coupled cavity system is studied in single excitation subspace and the evolution of the atom (field) states probabilities are obtained analytically. The probability amplitude of states executes oscillations with different modes and amplitudes, determined by the coupling strengths. The evolution is examined in detail for different atom field coupling strength, g and field–field hopping strength, A. It is noticed that the exact atomic probability amplitude transfer occurs when g ≪ A with minimal field excitation probability and the period of probability transfer is calculated. In the limit g ≫ A there exists periodic exchange of probability between atom and field inside each cavity and also between cavity 1 and cavity 2. Periodicity of each exchange in this limit also obtained.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850039
Author(s):  
Li Zheng ◽  
Gang Li ◽  
Ming-Song Ding ◽  
Yong-Liang Wang ◽  
Yun-Cui Zhang

We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.


Author(s):  
F. Hasselbach ◽  
A. Schäfer

Möllenstedt and Wohland proposed in 1980 two methods for measuring the coherence lengths of electron wave packets interferometrically by observing interference fringe contrast in dependence on the longitudinal shift of the wave packets. In both cases an electron beam is split by an electron optical biprism into two coherent wave packets, and subsequently both packets travel part of their way to the interference plane in regions of different electric potential, either in a Faraday cage (Fig. 1a) or in a Wien filter (crossed electric and magnetic fields, Fig. 1b). In the Faraday cage the phase and group velocity of the upper beam (Fig.1a) is retarded or accelerated according to the cage potential. In the Wien filter the group velocity of both beams varies with its excitation while the phase velocity remains unchanged. The phase of the electron wave is not affected at all in the compensated state of the Wien filter since the electron optical index of refraction in this state equals 1 inside and outside of the Wien filter.


1995 ◽  
Vol 165 (10) ◽  
pp. 1145 ◽  
Author(s):  
F.V. Bunkin ◽  
Gennadii A. Lyakhov ◽  
K.F. Shipilov
Keyword(s):  

1989 ◽  
Author(s):  
Fu-Li Li ◽  
Xiao-Shen Li ◽  
D. L. Lin ◽  
Thomas F. George
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document