EVOLUTION OF ATOM-FIELD PROBABILITY IN A COUPLED CAVITY SYSTEM

2013 ◽  
Vol 22 (03) ◽  
pp. 1350029
Author(s):  
K. V. PRIYESH ◽  
RAMESH BABU THAYYULLATHIL

In this paper we have investigated the dynamics of two cavities each with a two-level atom, coupled together with photon hopping. The coupled cavity system is studied in single excitation subspace and the evolution of the atom (field) states probabilities are obtained analytically. The probability amplitude of states executes oscillations with different modes and amplitudes, determined by the coupling strengths. The evolution is examined in detail for different atom field coupling strength, g and field–field hopping strength, A. It is noticed that the exact atomic probability amplitude transfer occurs when g ≪ A with minimal field excitation probability and the period of probability transfer is calculated. In the limit g ≫ A there exists periodic exchange of probability between atom and field inside each cavity and also between cavity 1 and cavity 2. Periodicity of each exchange in this limit also obtained.

2012 ◽  
Vol 10 (06) ◽  
pp. 1250070 ◽  
Author(s):  
ZHI-RONG ZHONG ◽  
XIU LIN ◽  
BIN ZHANG ◽  
ZHEN-BIAO YANG

We study the one-excitation dynamics of a coupled cavity system composed of three cavities, each containing a two-level atom. By adjusting the atom–cavity detuning Δ, cavity–cavity hopping rate v and the initial atomic excitation residential, a wide variety of time-evolution behaviors can be realized. Under certain conditions, the two-atom maximally entangled states and three-atom W states can be obtained. The results provide a theoretical basis for the manipulation of quantum states in such a system and will contribute to the understanding of more complex systems.


2021 ◽  
Author(s):  
Sadek Ahmed Hanoura

Abstract The dynamics of the quantum entropies of a system of two cavities coupled by an optical fiber cable, each cavity contains a two-level atom interacting with a single electromagnetic field in addition to an external classical field, is investigated. Under canonical transformations, the considered Hamiltonian is diagonalized. Effective Hamiltonians in three different limiting regimes: namely large optical fiber cable coupling bstrength, large detunig, and comparable detuning and optical fiber cable coupling strength, are derived. The ith ¯ -tom are respectively prepared in the superposition coherent and the ground states while the fields are prepared in the vacuum states. An analytical expression for the solution of the Schr¨odinger equation for each dispersive is derived. The degree of entanglement (DEM) is studied by using von Neumann atomic entropies. The influences of both the optical fiber cable coupling strength and the detuning on the evolution of the DEM ”their values are closely chosen to be compatible with the imposed restrictions for the applications of the different regimes” are analyzed. General conclusions reached are illustrated by numerical results.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650114
Author(s):  
De-Wei Cao ◽  
Yixin Zhang ◽  
Jicheng Wang ◽  
Zheng-Da Hu

The dynamical properties of quantum coherence in the system of two-coupled-cavities, each of which resonantly interacts with a two-level atom, is investigated via the relative entropy measure. We focus on the coherences for the atom–atom, atom–cavity and cavity–cavity subsystems and find that the dynamical behaviors of these coherences depend largely on the cavity–cavity coupling, which may indicate the Mott insulator-superfluid transition in the thermodynamic limit. We also study the influences of the initial cavity–cavity correlation on the coherences and show that the initial correlation of the cavity–cavity subsystem can enhance the revival ability for the atom–atom and cavity–cavity coherences while reduce that for the atom–cavity coherence. Besides, we demonstrate the qualitative difference of dynamics between coherence and entanglement. Finally, the influences of dissipations including cavity losses and atomic decays on the coherence are explored.


1984 ◽  
Vol 20 (13) ◽  
pp. 553 ◽  
Author(s):  
W. Streifer ◽  
D. Yevick ◽  
T.L. Paoli ◽  
R.D. Burnham

2017 ◽  
Vol 15 (9) ◽  
pp. 092702 ◽  
Author(s):  
Tiantian Liu Tiantian Liu ◽  
Gongwei Lin Gongwei Lin ◽  
Fengxue Zhou Fengxue Zhou ◽  
Li Deng Li Deng ◽  
Shangqing Gong Shangqing Gong ◽  
...  

2014 ◽  
Vol 11 (S308) ◽  
pp. 589-590 ◽  
Author(s):  
P. Zivick ◽  
P. M. Sutter

AbstractWe use properties of void populations identified in N-body simulations to forecast the ability of upcoming galaxy surveys to differentiate models of f(R) gravity from \lcdm cosmology. We analyze simulations designed to mimic the densities, volumes, and clustering statistics of upcoming surveys, using the public {\tt VIDE} toolkit. We examine void abundances as a basic probe at redshifts 1.0 and 0.4. We find that stronger f(R) coupling strengths produce voids up to ∼20% larger in radius, leading to a significant shift in the void number function. As an initial estimate of the constraining power of voids, we use this change in the number function to forecast a constraint on the coupling strength of Δ fR0 = 10-5.


1988 ◽  
Vol 141 ◽  
Author(s):  
H. Krakauer ◽  
R. E. Cohen ◽  
W. E. Pickett

AbstractElectron-phonon matrix elements, phonon linewidths and mode coupling strengths are being calculated for La2-xMxCuO4 (M-divalent cation, for paramagnetic x-0.0 and for x-0.15 in a rigid band picture) from first principles local density calculations. The change in potential due to a particular phonon mode is calculated from the difference of self-consistent one-electron potentials, and appropriate Fermi surface averages are carried out for selected modes, allowing us to obtain the phonon linewidth due to the electron-phonon interaction, and the corresponding coupling strength λQ. Here we establish the numerical accuracy within the dual representation of the potential used in the Linearized Augmented Plane Wave (LAPW) method. Evaluations of phonon linewidths and mode coupling strengths are presented for Al and Nb and compared with previous information on these modes. We present preliminary results for the full matrix elements and coupling of the La2CuO4 oxygen planar X-point breathing mode, and compare with a simpler approximation.


Sign in / Sign up

Export Citation Format

Share Document