Stability of Wave Packets in Layered Hydrodynamic Systems Subjected to the Surface Tension

2006 ◽  
Vol 33 (6) ◽  
pp. 553-566
Author(s):  
O. V. Avramenko ◽  
I. T. Selezov
1976 ◽  
Vol 43 (4) ◽  
pp. 584-588 ◽  
Author(s):  
A. H. Nayfeh

The method of multiple scales is used to derive two partial differential equations which describe the evolution of two-dimensional wave-packets on the interface of two semi-infinite, incompressible, inviscid fluids of arbitrary densities, taking into account the effect of the surface tension. These differential equations can be combined to yield two alternate nonlinear Schro¨dinger equations; one of them contains only first derivatives in time while the second contains first and second derivatives in time. The first equation is used to show that the stability of uniform wavetrains depends on the wave length, the surface tension, and the density ratio. The results show that gravity waves are unstable for all density ratios except unity, while capillary waves are stable unless the density ratio is below approximately 0.1716. Moreover, the presence of surface tension results in the stabilization of some waves which are otherwise unstable. Although the first equation is valid for a wide range of wave numbers, it is invalid near the cutoff wave number separating stable from unstable motions. It is shown that the second Schro¨dinger equation is valid near the cutoff wave number and thus it can be used to determine the dependence of the cutoff wave number on the amplitude, thereby avoiding the usual process of determining a new expansion that is only valid near the cutoff conditions.


1979 ◽  
Vol 92 (4) ◽  
pp. 691-715 ◽  
Author(s):  
Mark J. Ablowitz ◽  
Harvey Segur

We consider the evolution of packets of water waves that travel predominantly in one direction, but in which the wave amplitudes are modulated slowly in both horizontal directions. Two separate models are discussed, depending on whether or not the waves are long in comparison with the fluid depth. These models are two-dimensional generalizations of the Korteweg-de Vries equation (for long waves) and the cubic nonlinear Schrödinger equation (for short waves). In either case, we find that the two-dimensional evolution of the wave packets depends fundamentally on the dimensionless surface tension and fluid depth. In particular, for the long waves, one-dimensional (KdV) solitons become unstable with respect to even longer transverse perturbations when the surface-tension parameter becomes large enough, i.e. in very thin sheets of water. Two-dimensional long waves (‘lumps’) that decay algebraically in all horizontal directions and interact like solitons exist only when the one-dimensional solitons are found to be unstable.The most dramatic consequence of surface tension and depth, however, occurs for capillary-type waves in sufficiently deep water. Here a packet of waves that are everywhere small (but not infinitesimal) and modulated in both horizontal dimensions can ‘focus’ in a finite time, producing a region in which the wave amplitudes are finite. This nonlinear instability should be stronger and more apparent than the linear instabilities examined to date; it should be readily observable.Another feature of the evolution of short wave packets in two dimensions is that all one-dimensional solitons are unstable with respect to long transverse perturbations. Finally, we identify some exact similarity solutions to the evolution equations.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
F. Hasselbach ◽  
A. Schäfer

Möllenstedt and Wohland proposed in 1980 two methods for measuring the coherence lengths of electron wave packets interferometrically by observing interference fringe contrast in dependence on the longitudinal shift of the wave packets. In both cases an electron beam is split by an electron optical biprism into two coherent wave packets, and subsequently both packets travel part of their way to the interference plane in regions of different electric potential, either in a Faraday cage (Fig. 1a) or in a Wien filter (crossed electric and magnetic fields, Fig. 1b). In the Faraday cage the phase and group velocity of the upper beam (Fig.1a) is retarded or accelerated according to the cage potential. In the Wien filter the group velocity of both beams varies with its excitation while the phase velocity remains unchanged. The phase of the electron wave is not affected at all in the compensated state of the Wien filter since the electron optical index of refraction in this state equals 1 inside and outside of the Wien filter.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Sign in / Sign up

Export Citation Format

Share Document