scholarly journals Critical exponents and fine-grid vortex model of the dynamic vortex Mott transition in superconducting arrays

2019 ◽  
Vol 100 (10) ◽  
Author(s):  
Enzo Granato
2021 ◽  
Author(s):  
Pei Zi-Xi ◽  
Guo Wei-Gui ◽  
Qiu Xiang-Gang

Abstract The proximity-coupled superconducting island arrays on a metallic film provide an ideal platform to study the phase transition of vortex states under mutual interactions between the vortex and potential landscape. We have developed a top-down microfabrication process for Nb island arrays on Au film by employing an Al hard mask. A current-induced dynamic vortex Mott transition has been observed under the perpendicular magnetic fields of $f$ magnetic flux quantum per unit cell, which is characterized by a dip-to-peak reversal in differential resistance $dV/dI$ vs. $f$ curve with the increasing current. The $dV/dI$ vs. $I$ characteristics show a scaling behavior near the magnetic fields of $f=\frac{1}{2}$ and $f=1$, with the critical exponents $\varepsilon$ of 0.45 and 0.3 respectively, suggesting different universality classes at these two fields.


1987 ◽  
Vol 48 (4) ◽  
pp. 553-558 ◽  
Author(s):  
B. Bonnier ◽  
Y. Leroyer ◽  
C. Meyers

Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


Author(s):  
Dongdong Zhao ◽  
Peng Chen ◽  
Yingtian Hu ◽  
Ronghua Liang ◽  
Haixia Wang ◽  
...  

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Philipp W. Klein ◽  
Adolfo G. Grushin ◽  
Karyn Le Hur

Sign in / Sign up

Export Citation Format

Share Document