scholarly journals CO$$_{2}$$ Convection in Hydrocarbon Under Flowing Conditions

Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3663
Author(s):  
Lindsey Rasmussen ◽  
Tianguang Fan ◽  
Alex Rinehart ◽  
Andrew Luhmann ◽  
William Ampomah ◽  
...  

The efficiency of carbon utilization and storage within the Pennsylvanian Morrow B sandstone, Farnsworth Unit, Texas, is dependent on three-phase oil, brine, and CO2 flow behavior, as well as spatial distributions of reservoir properties and wettability. We show that end member two-phase flow properties, with binary pairs of oil–brine and oil–CO2, are directly dependent on heterogeneity derived from diagenetic processes, and evolve progressively with exposure to CO2 and changing wettability. Morrow B sandstone lithofacies exhibit a range of diagenetic processes, which produce variations in pore types and structures, quantified at the core plug scale using X-ray micro computed tomography imaging and optical petrography. Permeability and porosity relationships in the reservoir permit the classification of sedimentologic and diagenetic heterogeneity into five distinct hydraulic flow units, with characteristic pore types including: macroporosity with little to no clay filling intergranular pores; microporous authigenic clay-dominated regions in which intergranular porosity is filled with clay; and carbonate–cement dominated regions with little intergranular porosity. Steady-state oil–brine and oil–CO2 co-injection experiments using reservoir-extracted oil and brine show that differences in relative permeability persist between flow unit core plugs with near-constant porosity, attributable to contrasts in and the spatial arrangement of diagenetic pore types. Core plugs “aged” by exposure to reservoir oil over time exhibit wettability closer to suspected in situ reservoir conditions, compared to “cleaned” core plugs. Together with contact angle measurements, these results suggest that reservoir wettability is transient and modified quickly by oil recovery and carbon storage operations. Reservoir simulation results for enhanced oil recovery, using a five-spot pattern and water-alternating-with-gas injection history at Farnsworth, compare models for cumulative oil and water production using both a single relative permeability determined from history matching, and flow unit-dependent relative permeability determined from experiments herein. Both match cumulative oil production of the field to a satisfactory degree but underestimate historical cumulative water production. Differences in modeled versus observed water production are interpreted in terms of evolving wettability, which we argue is due to the increasing presence of fast paths (flow pathways with connected higher permeability) as the reservoir becomes increasingly water-wet. The control of such fast-paths is thus critical for efficient carbon storage and sweep efficiency for CO2-enhanced oil recovery in heterogeneous reservoirs.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 232
Author(s):  
Aqilah Dollah ◽  
Zakirah Zainol Rashid ◽  
Nur Hidayati Othman ◽  
Siti Nurliyana Che Mohamed Hussein ◽  
Suriatie Mat Yusuf ◽  
...  

Ultrasonic waves is an unconventional enhanced oil recovery (EOR) technology and has been a point of interest as it is more economical and environmentally friendly. Numerous research works on ultrasonic waves application in EOR have been reported, nevertheless the studies on the effect of ultrasonic waves towards oil mobilization in porous media are still debatable. Therefore, this study aims to investigate the effect of ultrasonic waves on enhanced oil recovery of three types of oil (kerosene, engine oil and crude oil) and a brine sample at different temperatures (27°C, 35°C, 45°C, 55°C). A series of ultrasonic waterflooding experiments were conducted under controlled temperature conditions. Results demonstrated that oil recovery increases as the temperature increases during ultrasonic exposure compared to conventional waterflooding. The ultrasonic waves creates energy that increase the mobility of a displacing fluid thus reduce the viscosity of displaced fluids whereas the vibration energy produced from ultrasonic waves induced the mobility of the entrapped oil within the pores. The IR Spectra test indicates that the oil produced from ultrasonic simulated waterflooding for oils with different viscosity and density from the IR Spectra result without ultrasonic exposure due to the influence of flow behavior and sweep efficiencies of fluids. As conclusion, the ultrasonic cavitation is one of mechanism that could improve oil mobilization and enhanced oil recovery.  


SPE Journal ◽  
2015 ◽  
Vol 20 (06) ◽  
pp. 1227-1237 ◽  
Author(s):  
Fatemeh Kamali ◽  
Furqan Hussain ◽  
Yildiray Cinar

Summary This paper presents experimental observations that delineate co-optimization of carbon dioxide (CO2) enhanced oil recovery (EOR) and storage. Pure supercritical CO2 is injected into a homogeneous outcrop sandstone sample saturated with oil and immobile water under various miscibility conditions. A mixture of hexane and decane is used for the oil phase. Experiments are run at 70°C and three different pressures (1,300, 1,700, and 2,100 psi). Each pressure is determined by use of a pressure/volume/temperature simulator to create immiscible, near-miscible, and miscible displacements. Oil recovery, differential pressure, and compositions are recorded during experiments. A co-optimization function for CO2 storage and incremental oil is defined and calculated using the measured data for each experiment. A compositional reservoir simulator is then used to examine gravity effects on displacements and to derive relative permeabilities. Experimental observations demonstrate that almost similar oil recovery is achieved during miscible and near-miscible displacements whereas approximately 18% less recovery is recorded in the immiscible displacement. More heavy component (decane) is recovered in the miscible and near-miscible displacements than in the immiscible displacement. The co-optimization function suggests that the near-miscible displacement yields the highest CO2-storage efficiency and displays the best performance for coupling CO2 EOR and storage. Numerical simulations show that, even on the laboratory scale, there are significant gravity effects in the near-miscible and miscible displacements. It is revealed that the near-miscible and miscible recoveries depend strongly on the endpoint effective CO2 permeability.


2010 ◽  
Author(s):  
Sidsel Marie Nielsen ◽  
Kristian Jessen ◽  
Alexander A. Shapiro ◽  
Michael L. Michelsen ◽  
Erling Halfdan Stenby

2018 ◽  
Author(s):  
Colin Ward ◽  
Wolfgang Heidug

Storing carbon dioxide (CO2 ) in oil reservoirs as part of CO2 -based enhanced oil recovery (CO2 -EOR) can be a cost-effective solution to reduce emissions into the atmosphere. In this paper, we analyze the economics of this option in order to estimate the amount of CO2 that could be profitably stored in different regions of the world. We consider situations in which the CO2 -EOR operator either purchases the CO2 supplied or is paid for its storage. Building upon extensive data sets concerning the characteristics and location of oil reservoirs and emission sources, the paper focuses on opportunities outside North America. Using net present value (NPV) as an indicator for profitability, we conduct a break-even analysis to relate CO2 supply prices (positive or negative) to economically viable storage potential.


2008 ◽  
Vol 29 (1) ◽  
pp. 25 ◽  
Author(s):  
Dongmei Li ◽  
Philip Hendry

Buried hydrocarbon deposits, such as liquid petroleum, represent an abundant source of reduced carbon for microbes. It is not surprising therefore that many organisms have adapted to an oily, anaerobic life deep underground, often at high temperatures and pressures, and that those organisms have had, and in some cases continue to have, an effect on the quality and recovery of the earth?s diminishing petroleum resources. There are three key microbial processes of interest to petroleum producers: reservoir souring, hydrocarbon degradation and microbially enhanced oil recovery (MEOR).


Sign in / Sign up

Export Citation Format

Share Document