scholarly journals Electron and hole transport in disordered monolayer MoS2 : Atomic vacancy induced short-range and Coulomb disorder scattering

2019 ◽  
Vol 100 (11) ◽  
Author(s):  
Kristen Kaasbjerg ◽  
Tony Low ◽  
Antti-Pekka Jauho

Mathematical relations are obtained giving the X-ray scattering for a crystal the unit cell of which contains one or two asymmetric molecules, each of which can adopt either of two centrosymmetrically-related orientations, giving pseudocentrosymmetry. It is shown that measurements of the integral breadth of maxima of the diffuse ‘disorder’ scattering can give the dimensions of the short-range order regions. The temperature variation of intensity of such diffuse scattering is different from that of thermal diffuse scattering.


ACS Nano ◽  
2018 ◽  
Vol 12 (3) ◽  
pp. 2669-2676 ◽  
Author(s):  
Evgeniy Ponomarev ◽  
Árpád Pásztor ◽  
Adrien Waelchli ◽  
Alessandro Scarfato ◽  
Nicolas Ubrig ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 1-5
Author(s):  
Caroline Dos Santos Soares ◽  
Gilson Inácio Wirth ◽  
Alan Rossetto ◽  
Dragica Vasileska

This paper employs Ensemble Monte Carlo method to simulate transport of holes in SiGe alloys. A three-band model was employed to describe the valence band of these alloys. The nonparabolicity and the warping effect of the heavy-hole and light-hole bands were considered in their dispersion relation, while the split-off band was described as parabolic and spherical. We consider phonon and alloy disorder scattering in these calculations. The mobility of holes for a range of SiGe al-loys was calculated at 300K. The simulation mobility results agree with the experimental data, implying that the selected transport model for holes in SiGe alloys is adequate.


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Author(s):  
E.A. Kenik ◽  
T.A. Zagula ◽  
M.K. Miller ◽  
J. Bentley

The state of long-range order (LRO) and short-range order (SRO) in Ni4Mo has been a topic of interest for a considerable time (see Brooks et al.). The SRO is often referred to as 1½0 order from the apparent position of the diffuse maxima in diffraction patterns, which differs from the positions of the LRO (D1a) structure. Various studies have shown that a fully disordered state cannot be retained by quenching, as the atomic arrangements responsible for the 1½0 maxima are present at temperatures above the critical ordering temperature for LRO. Over 20 studies have attempted to identify the atomic arrangements associated with this state of order. A variety of models have been proposed, but no consensus has been reached. It has also been shown that 1 MeV electron irradiation at low temperatures (∼100 K) can produce the disordered phase in Ni4Mo. Transmission electron microscopy (TEM), atom probe field ion microscopy (APFIM), and electron irradiation disordering have been applied in the current study to further the understanding of the ordering processes in Ni4Mo.


Nanoscale ◽  
2019 ◽  
Vol 11 (46) ◽  
pp. 22432-22439 ◽  
Author(s):  
Yinghui Sun ◽  
Yan Aung Moe ◽  
Yingying Xu ◽  
Yufei Sun ◽  
Xuewen Wang ◽  
...  

Local strain is best preserved on Al2O3 but relaxed most easily on mica because of the interface interaction from substrates.


1969 ◽  
Vol 14 (8) ◽  
pp. 437-438
Author(s):  
CELIA STENDLER LAVATELLI

1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-175-Pr2-178 ◽  
Author(s):  
G. T. Pérez ◽  
F. H. Salas ◽  
R. Morales ◽  
L. M. Álvarez-Prado ◽  
J. M. Alameda

Sign in / Sign up

Export Citation Format

Share Document