scholarly journals Microscopic derivation of superconductor-insulator boundary conditions for Ginzburg-Landau theory revisited: Enhanced superconductivity at boundaries with and without magnetic field

2021 ◽  
Vol 103 (22) ◽  
Author(s):  
Albert Samoilenka ◽  
Egor Babaev
2003 ◽  
Vol 17 (16) ◽  
pp. 3001-3020 ◽  
Author(s):  
I. N. Askerzade

Temperature dependence of the upper critical field Hc2(T), lower critical field Hc1(T) and thermodynamic magnetic field Hcm(T) are studied in the vicinity of Tc using a two-band Ginzburg–Landau (GL) theory. The results are shown to be in a good agreement with experimental data for the superconducting magnesium diboride (MgB2) and non-magnetic borocarbides LuNi 2 B 2 C ( YNi 2 B 2 C ). In addition, two-band GL theory was applied for the calculation of specific heat jump, which is smaller than in single-band GL theory. Peculiarities of Little–Parks effect in two-band GL theory are studied also. It is shown that the quantization of the magnetic flux and the relation between surface magnetic field Hc3(T) and upper critical field Hc2(T) are the same as in single band GL theory.


2015 ◽  
Vol 29 (35n36) ◽  
pp. 1550247
Author(s):  
Xiao-Meng Liang ◽  
Guo-Qiao Zha

In this paper, based on the time-dependent Ginzburg–Landau theory, we study the dynamics of vortex–antivortex (V–Av) pairs in a mesoscopic superconducting square with a small hole under applied bias currents. For the sample with a centered hole, a V–Av pair can nucleate at the hole edges and moves in opposite directions perpendicular to applied constant DC drive. The influence of the external magnetic field on the (anti)vortex velocity and the lifetime of V–Av pairs is mainly investigated. Different modes in the dynamical process of the V–Av collision and annihilation are identified. Moreover, in the case when the hole is displaced from the center of the square, the V–Av dynamics behaves quite differently from the symmetric case due to the shift of the V–Av creation point.


2016 ◽  
Vol 18 (04) ◽  
pp. 1550047 ◽  
Author(s):  
Andres Contreras ◽  
Xavier Lamy

In Ginzburg–Landau theory, a strong magnetic field is responsible for the breakdown of superconductivity. This work is concerned with the identification of the region where superconductivity persists, in a thin shell superconductor modeled by a compact surface [Formula: see text], as the intensity [Formula: see text] of the external magnetic field is raised above [Formula: see text]. Using a mean field reduction approach devised by Sandier and Serfaty as the Ginzburg–Landau parameter [Formula: see text] goes to infinity, we are led to studying a two-sided obstacle problem. We show that superconductivity survives in a neighborhood of size [Formula: see text] of the zero locus of the normal component [Formula: see text] of the field. We also describe intermediate regimes, focusing first on a symmetric model problem. In the general case, we prove that a striking phenomenon we call freezing of the boundary takes place: one component of the superconductivity region is insensitive to small changes in the field.


2001 ◽  
Vol 15 (21) ◽  
pp. 929-934
Author(s):  
G. ILONCA ◽  
A. V. POP ◽  
R. STIUFIUC ◽  
G. STIUFIUC ◽  
C. LUNG ◽  
...  

Measurements of the magnetoresistivity, Seebeck, Nernst and Hall coefficients in Bi:2212 superconductors doped with Ho and Zn are reported. The critical temperature and the transport coefficients depend strongly on the Ho and Zn contents. The tails of the transport coefficients versus temperature curves are caused by fluctuation effects, which increase with increasing magnetic field. An anomalous suppression of superconductivity at x = 0.25–0.35 and y = 0.025–0.032 was also found when the hole concentration per Cu is P H = 1/8 and the transport properties exhibit metallic behavior. It was found that dB c2 /dT = -2.4 ± 0.2 T/K , corresponding to a Ginzburg–Landau coherence length ξ = 15 Å. The Hall resistivity ρxy scaling with the longitudinal resistivity ρxx as [Formula: see text] with α ≈ 1.8 is in agreement with the theory of Vinokur et al. The experimental data in the mixed state are in agreement with the prediction of the time-dependent Ginzburg–Landau theory.


2009 ◽  
Vol 23 (04) ◽  
pp. 549-565 ◽  
Author(s):  
KURT BINDER ◽  
SUBIR K. DAS ◽  
JÜRGEN HORBACH

When a binary mixture is quenched into the unstable region of the phase diagram, phase separation starts by spontaneous growth of long-wavelength concentration fluctuations ("spinodal decomposition"). In the presence of surfaces, the latter provide nontrivial boundary conditions for this growth. These boundary conditions can be derived from lattice models by suitable continuum approximations. But the lattice models can also be simulated directly, and thus used to clarify the conditions under which the Ginzburg–Landau type theory is valid. This comparison shows that the latter is accurate only in the immediate vicinity of the bulk critical point, if thermal fluctuations can also be neglected (true for the late stages of phase separation). In contrast, a local kinetic molecular field theory can take full account of nonlinearities and of rapid concentration variations, and thus has a much wider validity. This enables the detailed study of phase separation processes in thin films of solid binary alloys. However, the extension to spinodal decomposition in fluid binary systems (which can be simulated by brute force large scale molecular dynamics methods, of course) remains an unsolved challenge.


1992 ◽  
Vol 275 ◽  
Author(s):  
L. H. Allen ◽  
E. J. Cukauskas ◽  
G. K. Sherrill ◽  
R. T. Holm

ABSTRACTWe have grown thin film composites of and YBa2Cu3O7−x and LaAlO3 by co-sputtering. A film with composition of 10% LaAIO3 by volume had a transition temperature of 58K and critical current density of 1.2 × 106 A/cm2 at 4K. We measured the temperature dependence of the critical current and obtained a good fit with Ginzburg-Landau theory for thin films. A perpendicular magnetic field was applied, and the critical current and pinning force measured. At 70 kOe, the critical current was suppressed only a factor of 4 from its zero-field value. The measured pinning force was 2 × 109 dyn/cm3 at 70 kOe and is comparable to that of YBa2Cu3O7−x films.


2015 ◽  
Vol 33 (3) ◽  
pp. 644-648 ◽  
Author(s):  
I.N. Askerzade ◽  
R. T. Tagiyeva Askerbeyli

Abstract In this study we have calculated the fluctuation conductivity near critical temperature of SmFeAsO0.8F0.2 superconductor using two-band Ginzburg-Landau theory. It was illustrated that in the absence of external magnetic field, the two-band model reduced to a single effective band theory with modified temperature dependences. The calculations revealed three-dimensional character of fluctuations of conductivity in the new Fe-based superconductor SmFeAsO0.8F0.2. It has been shown that such a model is in good agreement with experimental data for this compound.


Sign in / Sign up

Export Citation Format

Share Document