scholarly journals Periodically refreshed baths to simulate open quantum many-body dynamics

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Archak Purkayastha ◽  
Giacomo Guarnieri ◽  
Steve Campbell ◽  
Javier Prior ◽  
John Goold
Keyword(s):  
Author(s):  
Joseph F. Boudreau ◽  
Eric S. Swanson

Specialized techniques for solving the classical many-body problem are explored in the context of simple gases, more complicated gases, and gravitating systems. The chapter starts with a brief review of some important concepts from statistical mechanics and then introduces the classic Verlet method for obtaining the dynamics of many simple particles. The practical problems of setting the system temperature and measuring observables are discussed. The issues associated with simulating systems of complex objects form the next topic. One approach is to implement constrained dynamics, which can be done elegantly with iterative methods. Gravitational systems are introduced next with stress on techniques that are applicable to systems of different scales and to problems with long range forces. A description of the recursive Barnes-Hut algorithm and particle-mesh methods that speed up force calculations close out the chapter.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Dominik Hahn ◽  
Juan-Diego Urbina ◽  
Klaus Richter ◽  
Rémy Dubertrand ◽  
S. L. Sondhi

Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3881-3887
Author(s):  
Ankit Arora ◽  
Pramoda K. Nayak ◽  
Tejendra Dixit ◽  
Kolla Lakshmi Ganapathi ◽  
Ananth Krishnan ◽  
...  

AbstractWe report on multiple excitonic resonances in bilayer tungsten diselenide (BL-WSe2) stacked at different angles and demonstrate the use of the stacking angle to control the occurrence of these excitations. BL-WSe2 with different stacking angles were fabricated by stacking chemical vapour deposited monolayers and analysed using photoluminescence measurements in the temperature range 300–100 K. At reduced temperatures, several excitonic features were observed and the occurrences of these exitonic resonances were found to be stacking angle dependent. Our results indicate that by controlling the stacking angle, it is possible to excite or quench higher order excitations to tune the excitonic flux in optoelectronic devices. We attribute the presence/absence of multiple higher order excitons to the strength of interlayer coupling and doping effect from SiO2/Si substrate. Understanding interlayer excitations will help in engineering excitonic devices and give an insight into the physics of many-body dynamics.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Tim Pistorius ◽  
Javad Kazemi ◽  
Hendrik Weimer
Keyword(s):  

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
I. Vakulchyk ◽  
I. Yusipov ◽  
M. Ivanchenko ◽  
S. Flach ◽  
S. Denisov

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Henrik P. Lüschen ◽  
Pranjal Bordia ◽  
Sean S. Hodgman ◽  
Michael Schreiber ◽  
Saubhik Sarkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document