Excitonic two-photon absorption in monolayer transition metal dichalcogenides: Impact of screening and trigonal warping

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Thomas Garm Pedersen ◽  
Alireza Taghizadeh
ACS Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 1558-1565 ◽  
Author(s):  
Ningning Dong ◽  
Yuanxin Li ◽  
Saifeng Zhang ◽  
Niall McEvoy ◽  
Riley Gatensby ◽  
...  

2020 ◽  
Author(s):  
David Moss

We observe extremely high two photon absorption (TPA) of BiOBr nanoflakes using the Z-scan technique. We report a TPA coefficient as high as ~ 6.697 × 10-7 m/W – more than an order of magnitude larger than that of other 2D materials such as graphene and transition metal dichalcogenides.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Andreas Koitzsch ◽  
Anna-Sophie Pawlik ◽  
Carsten Habenicht ◽  
Tom Klaproth ◽  
Roman Schuster ◽  
...  

Abstract Their exceptional optical properties are a driving force for the persistent interest in atomically thin transition metal dichalcogenides such as MoS2. The optical response is dominated by excitons. Apart from the bright excitons, which directly couple to light, it has been realized that dark excitons, where photon absorption or emission is inhibited by the spin state or momentum mismatch, are decisive for many optical properties. However, in particular the momentum dependence is difficult to assess experimentally and often remains elusive or is investigated by indirect means. Here we study the momentum dependent electronic structure experimentally and theoretically. We use angle-resolved photoemission as a one-particle probe of the occupied valence band structure and electron energy loss spectroscopy as a two-particle probe of electronic transitions across the gap to benchmark a single-particle model of the dielectric function $$\epsilon ({\bf{q}},\omega )$$ ϵ ( q , ω ) against momentum dependent experimental measurements. This ansatz captures key aspects of the data surprisingly well. In particular, the energy region where substantial nesting occurs, which is at the origin of the strong light–matter interaction of thin transition metal dichalcogenides and crucial for the prominent C-exciton, is described well and spans a more complex exciton landscape than previously anticipated. Its local maxima in $$({\bf{q}}\ \ne \ 0,\omega )$$ ( q ≠ 0 , ω ) space can be considered as dark excitons and might be relevant for higher order optical processes. Our study may lead to a more complete understanding of the optical properties of atomically thin transition metal dichalcogenides.


2016 ◽  
Vol 18 (6) ◽  
pp. 4451-4459 ◽  
Author(s):  
E. Akhüseyin ◽  
O. Türkmen ◽  
B. Küçüköz ◽  
H. Yılmaz ◽  
A. Karatay ◽  
...  

The effects of metals and substituents on the charge transfer mechanism and TPA properties of tetraarylazadipyrromethene compounds were investigated by ultrafast pump–probe spectroscopy, OA Z-scan experiments and DFT calculations.


Sign in / Sign up

Export Citation Format

Share Document