scholarly journals Enhancing d -wave superconductivity with nearest-neighbor attraction in the extended Hubbard model

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Mi Jiang
2007 ◽  
Vol 21 (10) ◽  
pp. 573-584 ◽  
Author(s):  
W. P. SU

To understand the interplay of d-wave superconductivity and antiferromagnetism, we consider a two-dimensional extended Hubbard model with nearest neighbor attractive interaction. The Hamiltonian is solved in the mean field approximation on a finite lattice. In the impurity-free case, the minimum energy solutions show phase separation as predicted previously based on free energy argument. The phase separation tendency implies that the system can be easily rendered inhomogeneous by a small external perturbation. Explicit solutions of a model including weak impurity potentials are indeed inhomogeneous in the spin-density-wave and d-wave pairing order parameters. Relevance of the results to the inhomogeneous cuprate superconductors is discussed.


1996 ◽  
Vol 10 (12) ◽  
pp. 1397-1423 ◽  
Author(s):  
MASA-AKI OZAKI ◽  
EIJI MIYAI ◽  
TOMOAKI KONISHI ◽  
KAORU HANAFUSA

This paper describes group theoretical classification of superconducting states (SC) in the extended Hubbard model with on-site repulsion (U), nearest neighbor attraction (V) and nearest neighbour exchange interaction (J) on the two-dimensional square lattice using the mean field approach. By decomposing the pairing interaction into irreducible parts; A1g, B1g and Eu of D4h point symmetry, we have derived two singlet SCs (s-wave and d-wave) from A1g and B1g, eight triplet SCs from Eu. The first three types of triplet SC have pairing by electrons with antiparallel spin, the second two types have pairing by electrons with equal spin and the last three types are non-unitary and have pairing by only up-spin electrons. We showed that three non-unitary states have to be accompanied with a ferromagnetic order from the structure of the maximal little groups. We performed numerical studies for these SCs. For parameters and electron density favorable for the ferromagnetic order, a non-unitary SC coexistent with ferromagnetism is most stable.


2012 ◽  
Vol 26 (29) ◽  
pp. 1250156 ◽  
Author(s):  
S. HARIR ◽  
M. BENNAI ◽  
Y. BOUGHALEB

We investigate the ground state phase diagram of the two dimensional Extended Hubbard Model (EHM) with more than Nearest-Neighbor (NN) interactions for finite size system at low concentration. This EHM is solved analytically for finite square lattice at one-eighth filling. All eigenvalues and eigenvectors are given as a function of the on-site repulsion energy U and the off-site interaction energy Vij. The behavior of the ground state energy exhibits the emergence of phase diagram. The obtained results clearly underline that interactions exceeding NN distances in range can significantly influence the emergence of the ground state conductor–insulator transition.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 213-216
Author(s):  
W. F. LEE ◽  
H. Q. LIN

In this paper, we generalized the perturbation approach to study the quasi-two-dimension extended Hubbard model. This model is characterizing by intra-chain electron hopping t, on-site Column interaction U, nearest-neighbor interaction V, and inter-chain electron hopping t′ and nearest-neighbor interaction V′. An effective Hamiltonian up to sixth-order in t/U, t/V, t/V′, t′/U, t′/V and t′/V′ expansion was obtained and the spin-spin correlation functions were calculated. We presented results for t=t′, V=V′.


2003 ◽  
Vol 17 (18n20) ◽  
pp. 3339-3342 ◽  
Author(s):  
W. F. Lee ◽  
H. Q. Lin

We apply a perturbation approach to study the quarter-filled extended Hubbard model at strong coupling limit. An effective Hamiltonian up to sixth order in t/U and t/V (t defines electron hopping, U defines on-site Coulomb interaction, and V defines nearest-neighbor Coulomb interaction) for one-dimensional chains was obtained. The spin-spin correlation functions were involved, which can be obtained after comparing to the ground state energy numerically obtained from the phase diagram.


Sign in / Sign up

Export Citation Format

Share Document