scholarly journals Spectroscopic signature of surface states and bunching of bulk subbands in topological insulator ( Bi0.4Sb0.6)2Te3 thin films

2022 ◽  
Vol 105 (3) ◽  
Author(s):  
Liesbeth Mulder ◽  
Carolien Castenmiller ◽  
Femke J. Witmans ◽  
Steef Smit ◽  
Mark S. Golden ◽  
...  
AIP Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 055706 ◽  
Author(s):  
Zhuo Bin Siu ◽  
Seng Ghee Tan ◽  
Mansoor B. A. Jalil

Nano Letters ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 4588-4593
Author(s):  
Yuxuan Jiang ◽  
Mahmoud M. Asmar ◽  
Xingyue Han ◽  
Mykhaylo Ozerov ◽  
Dmitry Smirnov ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3111
Author(s):  
Katarzyna Balin ◽  
Marcin Wojtyniak ◽  
Mateusz Weis ◽  
Maciej Zubko ◽  
Bartosz Wilk ◽  
...  

The impact of europium doping on the electronic and structural properties of the topological insulator Bi2Te3 is studied in this paper. The crystallographic structure studied by electron diffraction and transmission microscopy confirms that grown by Molecular Beam Epitaxy (MBE) system film with the Eu content of about 3% has a trigonal structure with relatively large monocrystalline grains. The X-ray photoemission spectroscopy indicates that europium in Bi2Te3 matrix remains divalent and substitutes bismuth in a Bi2Te3 matrix. An exceptional ratio of the photoemission 4d multiplet components in Eu doped film was observed. However, some spatial inhomogeneity at the nanometer scale is revealed. Firstly, local conductivity measurements indicate that the surface conductivity is inhomogeneous and is correlated with a topographic image revealing possible coexistence of conducting surface states with insulating regions. Secondly, Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) depth-profiling also shows partial chemical segregation. Such in-depth inhomogeneity has an impact on the lattice dynamics (phonon lifetime) evaluated by femtosecond spectroscopy. This unprecedented set of experimental investigations provides important insights for optimizing the process of growth of high-quality Eu-doped thin films of a Bi2Te3 topological insulator. Understanding such complex behaviors at the nanoscale level is a necessary step before considering topological insulator thin films as a component of innovative devices.


Author(s):  
Manik Goyal ◽  
Honggyu Kim ◽  
Timo Schumann ◽  
Luca Galletti ◽  
Anton A. Burkov ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Luis Hernando ◽  
Yuriko Baba ◽  
Elena Díaz ◽  
Francisco Domínguez-Adame

AbstractWe theoretically address the impact of a random distribution of non-magnetic impurities on the electron states formed at the surface of a topological insulator. The interaction of electrons with the impurities is accounted for by a separable pseudo-potential method that allows us to obtain closed expressions for the density of states. Spectral properties of surface states are assessed by means of the Green’s function averaged over disorder realisations. For comparison purposes, the configurationally averaged Green’s function is calculated by means of two different self-consistent methods, namely the self-consistent Born approximation (SCBA) and the coherent potential approximation (CPA). The latter is often regarded as the best single-site theory for the study of the spectral properties of disordered systems. However, although a large number of works employ the SCBA for the analysis of many-impurity scattering on the surface of a topological insulator, CPA studies of the same problem are scarce in the literature. In this work, we find that the SCBA overestimates the impact of the random distribution of impurities on the spectral properties of surface states compared to the CPA predictions. The difference is more pronounced when increasing the magnitude of the disorder.


Sign in / Sign up

Export Citation Format

Share Document