scholarly journals Cross-correlation spectra in interacting quantum dot systems

2022 ◽  
Vol 105 (3) ◽  
Author(s):  
Andreas Fischer ◽  
Iris Kleinjohann ◽  
Nikolai A. Sinitsyn ◽  
Frithjof B. Anders
2006 ◽  
Vol 32 (1-2) ◽  
pp. 144-147 ◽  
Author(s):  
Hidekazu Kumano ◽  
Satoshi Kimura ◽  
Michiaki Endo ◽  
Ikuo Suemune ◽  
Hirotaka Sasakura ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 695
Author(s):  
Ping Jiang ◽  
Na Ma ◽  
Peng Liu ◽  
Wenxuan Wu ◽  
Kai Zhang

In recent years, many groups and institutions have been committed to the research of integrated quantum photonic circuit technologies, of which the key components are waveguide coupled single photon sources. In this study, we propose an on-chip waveguide-coupled single photon source that is easily implemented as the waveguide is directly made from the quantum dot membrane. In order to scatter light out of the on-chip waveguide plane into the detection apparatus, grating output couplers are made at both ends of the waveguide. The photon statistics of the on-chip photon source were investigated by second-order correlation function g(2)(τ) measurements using a Hanbury Brown and Twiss interferometer. From the spectra and cross-correlation experiments by collecting emission at the point of quantum dot and out coupler, the emitting of single photons from the same quantum dot and propagating via the waveguide to the out couplers was confirmed. These results show that we have achieved an on-chip single photon source that is easily implemented and easily integrated into quantum photonic circuits.


2006 ◽  
Vol 18 (21) ◽  
pp. 2317-2319 ◽  
Author(s):  
J.P. Tourrenc ◽  
S. O'Donoghue ◽  
M.T. Todaro ◽  
S.P. Hegarty ◽  
M.B. Flynn ◽  
...  

Author(s):  
Douglas L. Dorset ◽  
Barbara Moss

A number of computing systems devoted to the averaging of electron images of two-dimensional macromolecular crystalline arrays have facilitated the visualization of negatively-stained biological structures. Either by simulation of optical filtering techniques or, in more refined treatments, by cross-correlation averaging, an idealized representation of the repeating asymmetric structure unit is constructed, eliminating image distortions due to radiation damage, stain irregularities and, in the latter approach, imperfections and distortions in the unit cell repeat. In these analyses it is generally assumed that the electron scattering from the thin negativelystained object is well-approximated by a phase object model. Even when absorption effects are considered (i.e. “amplitude contrast“), the expansion of the transmission function, q(x,y)=exp (iσɸ (x,y)), does not exceed the first (kinematical) term. Furthermore, in reconstruction of electron images, kinematical phases are applied to diffraction amplitudes and obey the constraints of the plane group symmetry.


Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


Sign in / Sign up

Export Citation Format

Share Document