Localization problem in optics: Nonlinear quasiperiodic media

1990 ◽  
Vol 41 (12) ◽  
pp. 8047-8053 ◽  
Author(s):  
S. Dutta Gupta ◽  
Deb Shankar Ray
2008 ◽  
Vol 19 (3) ◽  
pp. 1397-1416 ◽  
Author(s):  
Amir Beck ◽  
Marc Teboulle ◽  
Zahar Chikishev

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Maja B. Rosić ◽  
Mirjana I. Simić ◽  
Predrag V. Pejović

This paper considers a passive target localization problem in Wireless Sensor Networks (WSNs) using the noisy time of arrival (TOA) measurements, obtained from multiple receivers and a single transmitter. The objective function is formulated as a maximum likelihood (ML) estimation problem under the Gaussian noise assumption. Consequently, the objective function of the ML estimator is a highly nonlinear and nonconvex function, where conventional optimization methods are not suitable for this type of problem. Hence, an improved algorithm based on the hybridization of an adaptive differential evolution (ADE) and Nelder-Mead (NM) algorithms, named HADENM, is proposed to find the estimated position of a passive target. In this paper, the control parameters of the ADE algorithm are adaptively updated during the evolution process. In addition, an adaptive adjustment parameter is designed to provide a balance between the global exploration and the local exploitation abilities. Furthermore, the exploitation is strengthened using the NM method by improving the accuracy of the best solution obtained from the ADE algorithm. Statistical analysis has been conducted, to evaluate the benefits of the proposed modifications on the optimization performance of the HADENM algorithm. The comparison results between HADENM algorithm and its versions indicate that the modifications proposed in this paper can improve the overall optimization performance. Furthermore, the simulation shows that the proposed HADENM algorithm can attain the Cramer-Rao lower bound (CRLB) and outperforms the constrained weighted least squares (CWLS) and differential evolution (DE) algorithms. The obtained results demonstrate the high accuracy and robustness of the proposed algorithm for solving the passive target localization problem for a wide range of measurement noise levels.


2015 ◽  
Vol 798 ◽  
pp. 505-509 ◽  
Author(s):  
Lapo Gori ◽  
Roque Luiz da Silva Pitangueira ◽  
Samuel Silva Penna ◽  
Jamile Salim Fuina

This paper summarizes the implementation of an elasto-plastic constitutive model for a micro-polar continuum in the constitutive models framework of the software INSANE (INteractive Structural ANalysis Environment). Such an implementation is based on the tensorial format of a unified constitutive models formulation, that allows to implement different constitutive models independently on the peculiar numerical method adopted for the solution of the problem. The basic characteristics of the micro-polar continuum model and of the unified formulation of constitutive models are briefly recalled. A generalization of the micro-polar model is then introduced in order to include this model in the existent tensor-based formulation. Finally, an enhanced version of the general closest-point algorithm, ables to manage the generalized micro-polar formulation, is derived. A strain localization problem modeling illustrates the implementation.


Sign in / Sign up

Export Citation Format

Share Document