Impact ionization in semiconductors: Effects of high electric fields and high scattering rates

1992 ◽  
Vol 45 (19) ◽  
pp. 10958-10964 ◽  
Author(s):  
J. Bude ◽  
K. Hess ◽  
G. J. Iafrate
1987 ◽  
Vol 140 (1) ◽  
pp. 9-37 ◽  
Author(s):  
A. P. Dmitriev ◽  
M. P. Mikhailova ◽  
I. N. Yassievich

1997 ◽  
Vol 81 (7) ◽  
pp. 3181-3185 ◽  
Author(s):  
C. Benz ◽  
M. Claassen ◽  
D. Liebig

1993 ◽  
Vol 14 (2) ◽  
pp. 69-71 ◽  
Author(s):  
E. Zanoni ◽  
E.F. Crabbe ◽  
J.M.C. Stork ◽  
P. Pavan ◽  
G. Verzellesi ◽  
...  

Author(s):  
J. J. Hren ◽  
S. D. Walck

The field ion microscope (FIM) has had the ability to routinely image the surface atoms of metals since Mueller perfected it in 1956. Since 1967, the TOF Atom Probe has had single atom sensitivity in conjunction with the FIM. “Why then hasn't the FIM enjoyed the success of the electron microscope?” The answer is closely related to the evolution of FIM/Atom Probe techniques and the available technology. This paper will review this evolution from Mueller's early discoveries, to the development of a viable commercial instrument. It will touch upon some important contributions of individuals and groups, but will not attempt to be all inclusive. Variations in instrumentation that define the class of problems for which the FIM/AP is uniquely suited and those for which it is not will be described. The influence of high electric fields inherent to the technique on the specimens studied will also be discussed. The specimen geometry as it relates to preparation, statistical sampling and compatibility with the TEM will be examined.


Author(s):  
P. Singh ◽  
V. Cozzolino ◽  
G. Galyon ◽  
R. Logan ◽  
K. Troccia ◽  
...  

Abstract The time delayed failure of a mesa diode is explained on the basis of dendritic growth on the oxide passivated diode side walls. Lead dendrites nucleated at the p+ side Pb-Sn solder metallization and grew towards the n side metallization. The infinitesimal cross section area of the dendrites was not sufficient to allow them to directly affect the electrical behavior of the high voltage power diodes. However, the electric fields associated with the dendrites caused sharp band bending near the silicon-oxide interface leading to electron tunneling across the band gap at velocities high enough to cause impact ionization and ultimately the avalanche breakdown of the diode. Damage was confined to a narrow path on the diode side wall because of the limited influence of the electric field associated with the dendrite. The paper presents experimental details that led to the discovery of the dendrites. The observed failures are explained in the context of classical semiconductor physics and electrochemistry.


1993 ◽  
Vol 297 ◽  
Author(s):  
Qing Gu ◽  
Eric A. Schiff ◽  
Jean Baptiste Chevrier ◽  
Bernard Equer

We have measured the electron drift mobility in a-Si:H at high electric fields (E ≤ 3.6 x 105 V%cm). The a-Si:Hpin structure was prepared at Palaiseau, and incorporated a thickp+ layer to retard high field breakdown. The drift mobility was obtained from transient photocurrent measurements from 1 ns - 1 ms following a laser pulse. Mobility increases as large as a factor of 30 were observed; at 77 K the high field mobility de¬pended exponentially upon field (exp(E/Eu), where E u= 1.1 x 105 V%cm). The same field dependence was observed in the time range 10 ns – 1 μs, indicating that the dispersion parameter change with field was negligible. This latter result appears to exclude hopping in the exponential conduction bandtail as the fundamental transport mechanism in a-Si:H above 77 K; alternate models are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document