transient photocurrent
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 5)

Author(s):  
Shihan Qi ◽  
zhuangzhuang Yin ◽  
Liu zhu ◽  
Kang Xu ◽  
Miao Zhang ◽  
...  

Abstract In this work, a novel and efficient In2S3/Ag-Ag2S-AgInS2/TNR photocatalyst was successfully synthesized by a facile hydrothermal and wet chemical method. The In2S3/Ag-Ag2S-AgInS2/TNR has a greatly increased range of light absorption with sustained absorption intensity compared to the unmodified TNR arrays. In the photoelectrochemical test, the best transient photocurrent of the sample can reach 350 μA/cm2, which is 23.3 times higher than TNR (15 μA/cm2). In the photocatalytic degradation test of MO, In2S3/Ag-Ag2S-AgInS2/TNR exhibited the highest photocatalytic degradation efficiency which could reach 91.7%, 5.5 times higher than that of TNR (16.7%), much higher than many previously reported photocatalysts. The outstanding photoelectrochemical and photocatalytic properties of the samples is primarily owing to the formation of the core-shell structure and the synergistic effect of the composite material, which effectively facilitate the separation and migration of photogenerated electron-hole pairs and inhibit their recombination, thus enhancing the photoelectrochemical and photocatalytic performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Ya Li ◽  
Pingfang Han

AbstractIn this study, graphitic carbon nitride (g-C3N4) and niobium pentoxide nanofibers (Nb2O5 NFs) heterojunction was prepared by means of a direct electrospinning approach combined with calcination process. The characterizations confirmed a well-defined morphology of the g-C3N4/Nb2O5 heterojunction in which Nb2O5 NFs were tightly attached onto g-C3N4 nanosheets. Compared to pure g-C3N4 and Nb2O5 NFs, the as-prepared g-C3N4/Nb2O5 heterojunction exhibited remarkably enhanced photocatalytic activity for degradation of rhodamine B and phenol under visible light irradiation. The enhanced catalytic activity was attributed predominantly to the synergistic effect between g-C3N4 sheets and Nb2O5 NFs, which promoted the transferring of carriers and prohibited their recombination, confirmed by the measurement of transient photocurrent responses and photoluminescence spectra. In addition, the active species trapping experiments indicated that superoxide radical anion (·O2–) and hole (h+) were the major active species contributing to the photocatalytic process. With its high efficacy and ease of preparation, g-C3N4/Nb2O5 heterojunction has great potentials for applications in treatment of organic pollutants and conversion of solar energy.


2021 ◽  
Vol 21 (9) ◽  
pp. 4660-4664
Author(s):  
Woo-Seong Kim ◽  
Chan-Hyuk Ji ◽  
Se-Young Oh

We fabricated a photodetector device consisting of ITO/NiOx/Perovskite/PC60BM/BCP/Ag. The NiOx layer was deposited using the sol–gel and combustion processes. Combustion-processed NiOx films have advantages such as low annealing temperature, improved perovskite film quality, and better photodetector performance compared to the sol–gel processed NiOx film. The improved film quality, improved charge transfer, and reduced dark current of the device using combustion-processed NiOx film were investigated by measuring the current–voltage characteristics, transient photocurrent, and impedance analysis. The photodetector using the combustion-processed NiOx achieved a high detectivity of 1.20×1013 Jones and bandwidth of over 2 MHz at -0.1 V and 550 nm.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4449
Author(s):  
Yang Wang ◽  
Dongfang Yu ◽  
Yue Liu ◽  
Xin Liu ◽  
Yue Shi

Strain-induced internal electric fields present a significant path to boosting the separation of photoinduced electrons and holes. In addition, piezo-induced positive/negative pairs could be released smoothly, taking advantage of the excellent electroconductibility of some conductors. Herein, the hybrid piezo-photocatalysis is constructed by combining debut piezoelectric nanosheets (Bi4O5I2) and typical conductor multiwalled carbon nanotubes (CNT). The photocatalytic degradation efficiency that the hybrid CNT/Bi4O5I2 exhibits was remarkably increased by more than 2.3 times under ultrasonic vibration, due to the piezo-generated internal electric field. In addition, the transient photocurrent spectroscopy and electrochemical impedance measurement reveal that the CNT coating on Bi4O5I2 enhances the piezo-induced positive/negative migration. Therefore, the piezocatalytic activity of CNT/Bi4O5I2 could be improved by three times, compared with pure Bi4O5I2 nanosheets. Our results may offer promising approaches to sketching efficient piezo-photocatalysis for the full utilization of solar energy or mechanical vibration.


2021 ◽  
pp. 1-13
Author(s):  
M.Y. Naz ◽  
M. Irfan ◽  
S. Shukrullah ◽  
I. Ahmad ◽  
A. Ghaffar ◽  
...  

The conventionally synthesized nano-ferrite materials do not possess bulk properties, generally required for their use in mainstream industry. To make ferrite nanoparticles clinically applicable materials, it is important to have good control over morphology and optical properties of these materials. In this study, low-pressure microwave plasma was used to tailor the structural properties and surface chemistry of manganese ferrite nanoparticles. A facile sol-gel method was used to prepare cubic spinal structures of manganese ferrite nanoparticles. These nanoparticles were exposed to oxygen plasma sustained with a microwave source for improving their magnetic and photocatalytic activities. The techniques like XRD, SEM, PL, UV-Vis DRS, transient photocurrent response and EIS were used to characterize the samples. The plasma treated nanoparticles were used to degraded methyl blue (MB) dye in the solution. The photocatalytic activity showed 85% degradation of MB after 100 min of exposure of visible light. The second part of the paper studied the magnetic properties of the nanoparticles. The saturation magnetization decreased from 0.78 emu/g to 0.68 emu/g after plasma treatment of nanoparticles.


2021 ◽  
Author(s):  
Tongtong Zhang ◽  
Qi Yin ◽  
Menghan Zhang ◽  
Siyu Zhang ◽  
Yanning Shao ◽  
...  

Abstract A series of rGO/AgBr heterojunction photocatalysts were fabricated through a facile solvothermal method. The rGO/AgBr heterostructures were characterized by XPS, XRD, UV-Vis DRS, SEM, TEM, PL and the transient photocurrent responses. The XRD, SEM, XPS and TEM analyzes indicated that the graphene and silver bromide were successfully compounded without other impurities. The UV-Vis DRS exhibited that the composites have better optical properties than pure silver bromide. The PL and the transient photocurrent responses demonstrated that the addition of graphene significantly promotes the separation of photogenerated electrons and holes. Subsequently, the photocatalytic activities of rGO/AgBr composites were studied by degrading Rhodamine B (RhB). It turned out that the degradation rate of RhB by the rGO/AgBr heterojunction photocatalysts were significantly higher than that by pure AgBr. What’s more, to study the photocatalytic degradation mechanism of RhB by rGO/AgBr heterostructures, the trapping experiments were used to identify the main active components. This work confirmed that the photocatalytic degradation performance of the catalyst was greatly improved after doping graphene, which provided certain data support for degradation of organic contaminants in water.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohamed Mokhtar Mohamed ◽  
Hassan El-Farsy

AbstractA novel photocatalyst based on the design of P-N heterojunction between hollow spherical Mn3O4 and nanorods shape of α-Ag2WO4 is synthesized using a sonication-deposition–precipitation route. The nanocomposite Mn3O4/α-Ag2WO4(60%) exhibits a great potential towards nitroarenes (including 4-nitrophenol, 4-nitro-aniline and 4-Nitro-acetanilide) reduction under visible light irradiation exceeding that of Mn3O4/α-Ag2WO4(40%) as well as their individual counterparts (3–5%). The Mn3O4/α-Ag2WO4(60%) catalyst exhibited an excellent photo-reduction activity comprised of 0.067 s−1 towards 4-nitrophenol (0.001 M) in only 60 s reaction time using NaBH4 (0.2 M). This was due to the successful formation of the Mn3O4/α-Ag2WO4 composite as validated by XRD, TEM-SAED, XPS, FTIR, UV–Vis diffuse reflectance and PL techniques. Decreasing the Eg value into 2.7 eV, the existence of a new (151) plane in the composite beside enhancement of the composite electrical conductivity (1.66 × 10–7 Ω−1 cm−1) helps the facile nitroarenes adsorption and hydrogenation. Transient photocurrent response and linear sweep voltammetry results prove the facilitation of photogenerated charge carriers separation and transport via improving electron lifetime and lessening recombination rate. The composite photocatalyst produced higher amounts of H2 production, when inserted in a typical reaction medium containing NaBH4, comprised of 470 µ mole/g exceeding those of the counterparts (35 µ mole/g). This photocatalyst is strikingly hydrogenated 4-nitrophenol under mild conditions (25 °C and 0.35 MPa pressure of H2) with magnificent rate constant equal 34.9 × 10−3 min−1 with 100% selectivity towards 4-aminophenol.


Sign in / Sign up

Export Citation Format

Share Document