Coherent-potential approximation in the tight-binding linear muffin-tin orbital method

1993 ◽  
Vol 48 (3) ◽  
pp. 1989-1992 ◽  
Author(s):  
Prabhakar P. Singh ◽  
A. Gonis
2011 ◽  
Vol 25 (05) ◽  
pp. 735-745
Author(s):  
MOSHIOUR RAHAMAN ◽  
ABHIJIT MOOKERJEE

We use cluster generalization of the coherent potential approximation in the tight-binding linear muffin-tin orbital method to account for the effect of the local environment on electronic and magnetic properties of substitutional random alloys. This theory combines the augmented space formalism and conventional tight-binding linear muffin-tin orbital methods. In particular, we shall apply the technique to the bcc-based NiAl and fcc-based CuAu alloys and also compare with other approaches.


2019 ◽  
Vol 289 ◽  
pp. 185-191
Author(s):  
J. Kudrnovsky ◽  
Vaclav Drchal ◽  
Ilja Turek ◽  
David Wagenknecht ◽  
Sergii Khmelevskyi

The spin-disorder resistivity (SDR) of a broad range of magneticmaterials, both ordered and disordered, is reviewed.We identify the SDR at the critical temperature with the residualresistivity of the corresponding system evaluated in the frameworkof the disordered local moment (DLM) model.The underlying electronic structure is determined in the frameworkof the tight-binding linear muffin-tin orbital method which employsthe coherent potential approximation to describe the DLM stateand chemical disorder.The DLM fixed-spin moment method is used in the case when the DLMmoment collapses.The Kubo-Greenwood approach is employed to estimate the resistivityof the DLM state.Formalism is applied to Fe and Ni and its alloys, Heusler alloys,and ordered ferromagnetic and antiferromagnetic alloys.Finally, the SDR of the Earth's core will be studied using thesame formalism.Calculations are compared with available experimental data.


1989 ◽  
Vol 40 (18) ◽  
pp. 12196-12200 ◽  
Author(s):  
D. A. Papaconstantopoulos ◽  
A. Gonis ◽  
P. M. Laufer

1988 ◽  
Vol 141 ◽  
Author(s):  
M.J. DeWeert ◽  
D.A. Papaconstantopoulos ◽  
W.E. Pickett

AbstractWe present a highly accurate tight-binding parametrization of the LAPW band structure of the high-temperature superconductor YBa2Cu3O7, discuss the methodology used in obtaining this fit, and its potential application to a Tight-Binding Coherent-Potential Approximation (TB-CPA) calculation of the effects of oxygen vacancies on the electronic structure.


2000 ◽  
Vol 639 ◽  
Author(s):  
Yuzo Shinozuka ◽  
Hirotsugu Kida ◽  
Masanori Watarikawa

ABSTRACTWe have theoretically studied optical properties of a quantum well (QW) in which the well region is constructed from a binary alloy semiconductor A1−xBx in the coherent potential approximation (CPA). A tight binding model is used for a single particle (electron, hole, Frenkel exciton) in the well composed by a rectangular array of NxxNyxNz sites. The effect of the diagonal randomness is reduced to the coherent potential σ(E), which is assumed to be the same for all sites, and is selfconsistently determined with the average Green's function. For a slab (∞, ∞, Nz) and wire (∞, Ny, Nz), the density of states (E) is composed of Nz (or NyxNz) subbands, each shows the two (one)-dimensional van-Hove singularity. When x (or 1−x) is small, a B (A) impurity-band always appears at the lower (higher) energy side of the lowest (highest) host-band. The change of (E) and the absorption spectrum by changing the well-width and the dimensionality is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document