scholarly journals Density-functional calculations of defect formation energies using the supercell method: Brillouin-zone sampling

2005 ◽  
Vol 71 (24) ◽  
Author(s):  
Jihye Shim ◽  
Eok-Kyun Lee ◽  
Young Joo Lee ◽  
Risto M. Nieminen
Author(s):  
Shehab Shousha ◽  
Sarah Khalil ◽  
Mostafa Youssef

This paper studies comprehensively the defect chemistry and cation diffusion in α-Fe2O3. Defect formation energies and migration barriers are calculated using density functional theory with a theoretically calibrated Hubbard U...


2013 ◽  
Vol 1540 ◽  
Author(s):  
Fleur Legrain ◽  
Oleksandr I. Malyi ◽  
Teck L. Tan ◽  
Sergei Manzhos

ABSTRACTWe show in a theoretical density functional theory study that amorphous Si (a-Si) has more favorable energetics for Mg storage compared to crystalline Si (c-Si). Specifically, Mg and Li insertion is compared in a model a-Si simulation cell. Multiple sites for Mg insertion with a wide range of binding energies are identified. For many sites, Mg defect formation energies are negative, whereas they are positive in c-Si. Moreover, while clustering in c-Si destabilizes the insertion sites (by about 0.1/0.2 eV per atom for nearest-neighbor Li/Mg), it is found to stabilize some of the insertion sites for both Li (by up to 0.27 eV) and Mg (by up to 0.35 eV) in a-Si. This could have significant implications on the performance of Si anodes in Mg batteries.


2006 ◽  
Vol 918 ◽  
Author(s):  
John Earl Boyd ◽  
Arthur Edwards ◽  
Andrew C. Pineda

AbstractWe present first principles electronic structure calculations of oxygen substitutional defects in the Sb2Te3 layered crystalline system and a model of amorphous Sb2Te3 using density functional theory (DFT). Our calculated formation energies for oxygen substitutional defects at Sb sites are above 2 eV, so most of our results are on the Sb2Te3-xOx [x = .0074 - .20] system, where one of two inequivalent Te sites are instead occupied by a single oxygen atom with formation energies between -1.2 eV and .2 eV. Defect formation energies for the system show a preference for oxygen atoms on the Te1 site at low concentrations that switches to the Te2 site at high concentrations at approximately 6 atomic percent. In agreement with experiment, we find that oxygen does widen the band gap, even at relatively low concentrations.


NANO ◽  
2013 ◽  
Vol 08 (02) ◽  
pp. 1350021 ◽  
Author(s):  
LI BIN SHI ◽  
GUO QUAN QI ◽  
YING FEI

The defect formation energies and magnetic properties in Co -doped ZnO nanowires (NWs) are studied using the first-principle density functional method within the generalized gradient approximation (GGA) and GGA + U schemes. It is found that Co impurity has lower formation energies in the surface sites, indicating that Co impurity occupies preferably surface sites of NWs. Ferromagnetic (FM) and antiferromagnetic (AFM) coupling are investigated by GGA and GGA + U methods. The results show that the AFM coupling in energy is lower than the FM coupling, which indicates that AFM coupling is more stable. The magnetic properties can be mediated by the vacancies [ VO(B) and VZn(B) ] and interstitials [ IZn(oct) ]. The stability of the FM and AFM can be explained by the Co 3d energy level coupling.


MRS Advances ◽  
2016 ◽  
Vol 1 (17) ◽  
pp. 1203-1208 ◽  
Author(s):  
Brian S. Good

ABSTRACTYtterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.


2006 ◽  
Vol 251-252 ◽  
pp. 1-12 ◽  
Author(s):  
Faruque M. Hossain ◽  
Graeme E. Murch ◽  
L. Sheppard ◽  
Janusz Nowotny

The purpose of this work is to study the effect of bulk point defects on the electronic structure of rutile TiO2. The paper is focused on the effect of oxygen nonstoichiometry in the form of oxygen vacancies, Ti interstitials and Ti vacancies and related defect disorder on the band gap width and on the local energy levels inside the band gap. Ab initio density functional theory is used to calculate the formation energies of such intrinsic defects and to detect the positions of these defect induced energy levels in order to visualize the tendency of forming local mid-gap bands. Apart from the formation energy of the Ti vacancies (where experimental data do not exist) our calculated results of the defect formation energies are in fair agreement with the experimental results and the defect energy levels consistently support the experimental observations. The calculated results indicate that the exact position of defect energy levels depends on the estimated band gap and also the charge state of the point defects of TiO2.


Sign in / Sign up

Export Citation Format

Share Document