scholarly journals Imaging and manipulating electrons in a one-dimensional quantum dot with Coulomb blockade microscopy

2010 ◽  
Vol 81 (12) ◽  
Author(s):  
Jiang Qian ◽  
Bertrand I. Halperin ◽  
Eric J. Heller
2003 ◽  
Vol 17 (28) ◽  
pp. 5483-5487
Author(s):  
T. KLEIMANN ◽  
M. SASSETTI ◽  
B. KRAMER

The temperature dependence of Coulomb blockade peaks of a one dimensional quantum dot is calculated. The Coulomb interaction is treated microscopically using the Luttinger liquid model. The electron interaction is assumed to be non-homogeneous with a maximum strength near the quantum dot. The conductance peaks show non-analytic power law behaviour induced by the interaction. It is shown that there is a crossover in the power law which is related to the inhomogeneity of the interaction.


Nano Letters ◽  
2006 ◽  
Vol 6 (9) ◽  
pp. 1847-1851 ◽  
Author(s):  
Xiaoyong Wang ◽  
Zhiming M. Wang ◽  
Baolai Liang ◽  
Gregory J. Salamo ◽  
Chih-Kang Shih

2001 ◽  
Vol 15 (10n11) ◽  
pp. 1426-1442
Author(s):  
L. I. GLAZMAN ◽  
F. W. J. HEKKING ◽  
A. I. LARKIN

The Kondo effect in a quantum dot is discussed. In the standard Coulomb blockade setting, tunneling between the dot and the leads is weak, the number of electrons in the dot is well-defined and discrete; the Kondo effect may be considered in the framework of the conventional one-level Anderson impurity model. It turns out however, that the Kondo temperature TK in the case of weak tunneling is extremely low. In the opposite case of almost reflectionless single-mode junctions connecting the dot to the leads, the average charge of the dot is not discrete. Surprisingly, its spin may remain quantized: s=1/2 or s=0, depending (periodically) on the gate voltage. Such a "spin-charge separation" occurs because, unlike an Anderson impurity, a quantum dot carries a broad-band, dense spectrum of discrete levels. In the doublet state, the Kondo effect develops with a significantly enhanced TK. Like in the weak-tunneling regime, the enhanced TK exhibits strong mesoscopic fluctuations. The statistics of the fluctuations is universal, and related to the Porter-Thomas statistics of the wave function fluctuations.


2001 ◽  
Vol 704 ◽  
Author(s):  
Sheng-Ming Shih ◽  
Wei-Fang Su ◽  
Yuh-Jiuan Lin ◽  
Cen-Shawn Wu ◽  
Chii-Dong Chen

AbstractNovel arrays of gold nanoparticles with sulfur containing fullerene nanoparticles were self-assembled through the formation of Au-S covalent bonds. Disulfide functional groups were introduced into C60 molecule by reacting propyl 2-aminoethyl disulfide with C60. The two dimensional(2D) arrays were formed at the interface of aqueous phase of gold particles and organic phase of fullerene particles as a blue transparent film. TEM images showed that the fullerene spacing between adjacent Au(~10 nm) particles was about 2.1±0.4 nm, which was consistent with the result of 2.18 nm by molecular molding calculations(MM+). The arrays were deposited on the top of pairs of gold electrodes to form 2D colloidal single electron devices. The electrode pairs were made by electron beam lithography techniques, and the separation between tips of the two electrodes in a pair was less then 100 nm. Transport measurements at low temperatures exhibited Coulomb-Blockade type current-voltage characteristics, the lower the temperature the more pronounced the Coulomb gap. Also, step-by-step method was used to assemble one-dimensional(1D) array of gold nanoparticles with fullerene derivative between two electrodes spaced with 15 nm. The Coulomb blockade behavior of 1D arrays was clearer than that of 2D arrays.


Sign in / Sign up

Export Citation Format

Share Document