scholarly journals Influence of diffuse surface scattering on the stability of superconducting phases with spontaneous surface current generated by Andreev bound states

2018 ◽  
Vol 98 (13) ◽  
Author(s):  
Nobumi Miyawaki ◽  
Seiji Higashitani
2003 ◽  
Vol 387 (1-2) ◽  
pp. 7-12 ◽  
Author(s):  
M. Krawiec ◽  
B.L. Györffy ◽  
J.F. Annett

2021 ◽  
Vol 8 ◽  
Author(s):  
Oliver Brylski ◽  
Puja Shrestha ◽  
Patricia Gnutt ◽  
David Gnutt ◽  
Jonathan Wolf Mueller ◽  
...  

The energy currency of the cell ATP, is used by kinases to drive key cellular processes. However, the connection of cellular ATP abundance and protein stability is still under investigation. Using Fast Relaxation Imaging paired with alanine scanning and ATP depletion experiments, we study the nucleotide kinase (APSK) domain of 3′-phosphoadenosine-5′-phosphosulfate (PAPS) synthase, a marginally stable protein. Here, we show that the in-cell stability of the APSK is determined by ligand binding and directly connected to cellular ATP levels. The observed protein stability change for different ligand-bound states or under ATP-depleted conditions ranges from ΔGf0 = -10.7 to +13.8 kJ/mol, which is remarkable since it exceeds changes measured previously, for example upon osmotic pressure, cellular stress or differentiation. The results have implications for protein stability during the catalytic cycle of APS kinase and suggest that the cellular ATP level functions as a global regulator of kinase activity.


2001 ◽  
Vol 16 (17) ◽  
pp. 3025-3040 ◽  
Author(s):  
P. SUNDELL

We construct Spin (p + 1, p + 1) covariant D p-brane bound states by using the fact that the potentials in the RR sector of toroidically compactified type II supergravity transform as a chiral spinor of the T duality group. As an application, we show the invariance of the zero-force condition for a probe D-brane under noncommutative deformations of the background, which gives a holographic proof of the stability of the corresponding field theory ground state under noncommutative deformations. We also identify the Spin (p + 1, p + 1) transformation laws by examining the covariance of the D-brane Lagrangians.


2001 ◽  
Vol 446 ◽  
pp. 25-65 ◽  
Author(s):  
FABRICE VERON ◽  
W. KENDALL MELVILLE

We present the results of laboratory and field measurements on the stability of wind-driven water surfaces. The laboratory measurements show that when exposed to an increasing wind starting from rest, surface current and wave generation is accompanied by a variety of phenomena that occur over comparable space and time scales. Of particular interest is the generation of small-scale, streamwise vortices, or Langmuir circulations, the clear influence of the circulations on the structure of the growing wave field, and the subsequent transition to turbulence of the surface flow. Following recent work by Melville, Shear & Veron (1998) and Veron & Melville (1999b), we show that the waves that are initially generated by the wind are then strongly modulated by the Langmuir circulations that follow. Direct measurements of the modulated wave variables are qualitatively consistent with geometrical optics and wave action conservation, but quantitative comparison remains elusive. Within the range of parameters of the experiments, both the surface waves and the Langmuir circulations first appear at constant Reynolds numbers of 370 ± 10 and 530 ± 20, respectively, based on the surface velocity and the depth of the laminar shear layer. The onset of the Langmuir circulations leads to a significant increase in the heat transfer across the surface. The field measurements in a boat basin display the same phenomena that are observed in the laboratory. The implications of the measurements for air–sea fluxes, especially heat and gas transfer, and sea-surface temperature, are discussed.


Sign in / Sign up

Export Citation Format

Share Document