scholarly journals Topological Hall effect for electron scattering on nanoscale skyrmions in external magnetic field

2018 ◽  
Vol 98 (21) ◽  
Author(s):  
K. S. Denisov ◽  
I. V. Rozhansky ◽  
M. N. Potkina ◽  
I. S. Lobanov ◽  
E. Lähderanta ◽  
...  
Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 225-233 ◽  
Author(s):  
Guangyi Jia ◽  
Geng Li ◽  
Yan Zhou ◽  
Xianglong Miao ◽  
Xiaoying Zhou

AbstractThe photonic spin Hall effect (PSHE) is a promising candidate for controlling the spin states of photons and exploiting next-generation photonic devices based on spinoptics. Herein, the influences of a perpendicular magnetic field on the PSHE appearing on the surface of monolayer black phosphorus (BP) are investigated. Results reveal that both the in-plane and transverse spin-dependent shifts are quantised and show an oscillating pattern due to the splitting of Landau levels (LLs) induced by the external magnetic field B. And the oscillation period of spin Hall shifts gradually increases with strengthening B because of the increase of LL spacings. By contrast, for a fixed magnetic field, as the LL spacings become smaller and smaller with increasing the LL index, the oscillation period of spin Hall shifts gradually decreases as the photonic energy increases. Moreover, it is possibly due to the synergistic role of intrinsic anisotropy, high crystallinity, and quantisation-incurred localised decreases in beating-like complex conductivities of the BP film, giant spin Hall shifts, hundreds of times of the incident wavelength, are obtained in both transverse and in-plane directions. These unambiguously confirm the strong impact of the external magnetic field on the PSHE and shed important insights into understanding the rich magneto-optical transport properties in anisotropic two-dimensional atomic crystals.


Open Physics ◽  
2003 ◽  
Vol 1 (1) ◽  
Author(s):  
Nickolay Mikheev ◽  
Elena Narynskaya

AbstractThe neutrino-electron scattering in a dense degenerate magnetized plasma under the conditions μ 2 > 2eB ≫ μE is investigated. The volume density of the neutrino energy and momentum losses due to this process are calculated. The results we have obtained demonstrate that plasma in the presence of an external magnetic field is more transparent for neutrino than for non-magnetized plasma. It is shown that neutrino scattering under conditions considered does not lead to the neutrino force acting on plasma.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012135
Author(s):  
V A Shabashov ◽  
V K Kozin ◽  
A V Kavokin ◽  
I A Shelykh

Abstract The anomalous exciton Hall effect is a phenomenon that occurs in a quantum well in the presence of an external magnetic field applied perpendicular to the surface due to the interaction of the exciton dipole moment with an electric field, formed by the charged impurities. The effect was fully described in [1] for different magnetic field regimes. In this paper, we focus on the way the perturbation method was used for finding the ground state energy of an exciton in the limit of a weak magnetic field.


2016 ◽  
Vol 55 (11) ◽  
pp. 4633-4640
Author(s):  
Gong-Ping Zheng ◽  
Zhe Wu ◽  
Gao-Zhan Chang ◽  
Ling-Ling Yang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
F. Tejo ◽  
R. Hernández Heredero ◽  
O. Chubykalo-Fesenko ◽  
K. Y. Guslienko

AbstractA hedgehog or Bloch point is a point-like 3D magnetization configuration in a ferromagnet. Regardless of widely spread treatment of a Bloch point as a topological defect, its 3D topological charge has never been calculated. Here, applying the concepts of the emergent magnetic field and Dirac string, we calculate the 3D topological charge (Hopf index) of a Bloch point and show that due to the magnetostatic energy contribution it has a finite, non-integer value. Thus, Bloch points form a new class of hopfions—3D topological magnetization configurations. The calculated Bloch point non-zero gyrovector leads to important dynamical consequences such as the appearance of topological Hall effect.


Sign in / Sign up

Export Citation Format

Share Document