Charge transport simulations of NaCl in an external magnetic field: the quest for the Hall effect

2013 ◽  
Vol 111 (22-23) ◽  
pp. 3651-3661 ◽  
Author(s):  
F. Mouhat ◽  
S. Bonella ◽  
C. Pierleoni
Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 225-233 ◽  
Author(s):  
Guangyi Jia ◽  
Geng Li ◽  
Yan Zhou ◽  
Xianglong Miao ◽  
Xiaoying Zhou

AbstractThe photonic spin Hall effect (PSHE) is a promising candidate for controlling the spin states of photons and exploiting next-generation photonic devices based on spinoptics. Herein, the influences of a perpendicular magnetic field on the PSHE appearing on the surface of monolayer black phosphorus (BP) are investigated. Results reveal that both the in-plane and transverse spin-dependent shifts are quantised and show an oscillating pattern due to the splitting of Landau levels (LLs) induced by the external magnetic field B. And the oscillation period of spin Hall shifts gradually increases with strengthening B because of the increase of LL spacings. By contrast, for a fixed magnetic field, as the LL spacings become smaller and smaller with increasing the LL index, the oscillation period of spin Hall shifts gradually decreases as the photonic energy increases. Moreover, it is possibly due to the synergistic role of intrinsic anisotropy, high crystallinity, and quantisation-incurred localised decreases in beating-like complex conductivities of the BP film, giant spin Hall shifts, hundreds of times of the incident wavelength, are obtained in both transverse and in-plane directions. These unambiguously confirm the strong impact of the external magnetic field on the PSHE and shed important insights into understanding the rich magneto-optical transport properties in anisotropic two-dimensional atomic crystals.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012135
Author(s):  
V A Shabashov ◽  
V K Kozin ◽  
A V Kavokin ◽  
I A Shelykh

Abstract The anomalous exciton Hall effect is a phenomenon that occurs in a quantum well in the presence of an external magnetic field applied perpendicular to the surface due to the interaction of the exciton dipole moment with an electric field, formed by the charged impurities. The effect was fully described in [1] for different magnetic field regimes. In this paper, we focus on the way the perturbation method was used for finding the ground state energy of an exciton in the limit of a weak magnetic field.


2021 ◽  
Author(s):  
Kuei Sun ◽  
Zhi-qiang Bao ◽  
Wenlong Yu ◽  
Samuel D Hawkins ◽  
John F Klem ◽  
...  

Abstract Charge transport physics in InAs/GaSb bi-layer systems has recently attracted attention for the experimental search for two-dimensional topological superconducting states in solids. Here we report measurement of charge transport spectra of nano devices consisting of an InAs/GaSb quantum well sandwiched by tantalum superconductors. We explore the current-voltage relation as a function of the charge-carrier density in the quantum well controlled by a gate voltage and an external magnetic field. We observe three types of differential resistance peaks, all of which can be effectively tuned by the external magnetic field, and, however, two of which appear at electric currents independent of the gate voltage, indicating a dominant mechanism from the superconductor and the system geometry. By analyzing the spectroscopic features, we nd that the three types of peaks identify Andreev reflections, quasi-particle interference, and superconducting transitions in the device, respectively. Our results provide a basis for further exploration of possible topological superconducting state in the InAs/GaSb system.


2018 ◽  
Vol 98 (21) ◽  
Author(s):  
K. S. Denisov ◽  
I. V. Rozhansky ◽  
M. N. Potkina ◽  
I. S. Lobanov ◽  
E. Lähderanta ◽  
...  

2012 ◽  
Vol 26 (13) ◽  
pp. 1250084 ◽  
Author(s):  
PAOLO CEA

We investigate the quantum Hall effect in graphene. We argue that in graphene in presence of an external magnetic field there is dynamical generation of mass by a rearrangement of the Dirac sea. We show that the mechanism breaks the lattice valley degeneracy only for the n = 0 Landau levels and leads to the new observed ν = ±1 quantum Hall plateaus. We suggest that our result can be tested by means of numerical simulations of planar Quantum Electro Dynamics with dynamical fermions in an external magnetic fields on the lattice.


2003 ◽  
Vol 772 ◽  
Author(s):  
Vojislav Krstic ◽  
Siegmar Roth ◽  
Marko Burghard ◽  
Klaus Kern ◽  
Geert L.J.A. Rikken

AbstractNanotubes forming carbon atoms arrange differently, resulting into three main types of carbon nanotubes: armchair, zigzag, chiral. Thus, depending on their type, nanotubes may be regarded as chiral, molecular electrical conductors. As a consequence of symmetry arguments, the magnetoresistance of such tubes depends on the relative orientation of the traversing current and the external magnetic field. Magnetotransport measurements on single walled carbon nanotubes have been performed showing the expected dependence on both the current and magnetic field. Further, the quantum-mechanical model of a free electron on a helix in an external magnetic field is discussed in order to provide indicators to possible microscopic mechanisms.


2018 ◽  
Vol 91 (8) ◽  
Author(s):  
Börge Göbel ◽  
Alexander Mook ◽  
Jürgen Henk ◽  
Ingrid Mertig

Abstract Hall effects of electrons can be produced by an external magnetic field, spin–orbit coupling or a topologically non-trivial spin texture. The topological Hall effect (THE) – caused by the latter – is commonly observed in magnetic skyrmion crystals. Here, we show analogies of the THE to the conventional Hall effect (HE), the anomalous Hall effect (AHE), and the spin Hall effect (SHE). In the limit of strong coupling between conduction electron spins and the local magnetic texture the THE can be described by means of a fictitious, “emergent” magnetic field. In this sense the THE can be mapped onto the HE caused by an external magnetic field. Due to complete alignment of electron spin and magnetic texture, the transverse charge conductivity is linked to a transverse spin conductivity. They are disconnected for weak coupling of electron spin and magnetic texture; the THE is then related to the AHE. The topological equivalent to the SHE can be found in antiferromagnetic skyrmion crystals. We substantiate our claims by calculations of the edge states for a finite sample. These states reveal in which situation the topological analogue to a quantized HE, quantized AHE, and quantized SHE can be found.


Sign in / Sign up

Export Citation Format

Share Document