scholarly journals Orbital magnetization and anomalous Hall effect in interacting Weyl semimetals

2019 ◽  
Vol 99 (7) ◽  
Author(s):  
S. Acheche ◽  
R. Nourafkan ◽  
A.-M. S. Tremblay
Particles ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 63-74
Author(s):  
Toshitaka Tatsumi ◽  
Hiroaki Abuki

Transport properties of dense quark matter are discussed in the strong magnetic field, B. B dependence as well as density dependence of the Hall conductivity is discussed, based on the microscopic Kubo formula. We took into account the possibility of the inhomogeneous chiral phase at moderate densities, where anomalous Hall effect is intrinsic and resembles the one in Weyl semimetals in condensed matter physics. Some theoretical aspects inherent in anomalous Hall effect are also discussed.


Science ◽  
2019 ◽  
Vol 365 (6459) ◽  
pp. 1282-1285 ◽  
Author(s):  
D. F. Liu ◽  
A. J. Liang ◽  
E. K. Liu ◽  
Q. N. Xu ◽  
Y. W. Li ◽  
...  

Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xiaolei Wang ◽  
Dong Pan ◽  
Qingqi Zeng ◽  
Xue Chen ◽  
Hailong Wang ◽  
...  

Topological Weyl semimetals have attracted lots of interests, because they provide underlying physics and device potential in spintronics. Large anomalous Hall effect (AHE) in non-collinear antiferromagnets (AFMs) represents a striking...


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Hua Wang ◽  
Xiaofeng Qian

AbstractUnder broken time reversal symmetry such as in the presence of external magnetic field or internal magnetization, a transverse voltage can be established in materials perpendicular to both longitudinal current and applied magnetic field, known as classical Hall effect. However, this symmetry constraint can be relaxed in the nonlinear regime, thereby enabling nonlinear anomalous Hall current in time-reversal invariant materials – an underexplored realm with exciting new opportunities beyond classical linear Hall effect. Here, using group theory and first-principles theory, we demonstrate a remarkable ferroelectric nonlinear anomalous Hall effect in time-reversal invariant few-layer WTe2 where nonlinear anomalous Hall current switches in odd-layer WTe2 except 1T′ monolayer while remaining invariant in even-layer WTe2 upon ferroelectric transition. This even-odd oscillation of ferroelectric nonlinear anomalous Hall effect was found to originate from the absence and presence of Berry curvature dipole reversal and shift dipole reversal due to distinct ferroelectric transformation in even and odd-layer WTe2. Our work not only treats Berry curvature dipole and shift dipole on an equal footing to account for intraband and interband contributions to nonlinear anomalous Hall effect, but also establishes Berry curvature dipole and shift dipole as new order parameters for noncentrosymmetric materials. The present findings suggest that ferroelectric metals and Weyl semimetals may offer unprecedented opportunities for the development of nonlinear quantum electronics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peigang Li ◽  
Jahyun Koo ◽  
Wei Ning ◽  
Jinguo Li ◽  
Leixin Miao ◽  
...  

Abstract Weyl semimetals exhibit unusual surface states and anomalous transport phenomena. It is hard to manipulate the band structure topology of specific Weyl materials. Topological transport phenomena usually appear at very low temperatures, which sets challenges for applications. In this work, we demonstrate the band topology modification via a weak magnetic field in a ferromagnetic Weyl semimetal candidate, Co2MnAl, at room temperature. We observe a tunable, giant anomalous Hall effect (AHE) induced by the transition involving Weyl points and nodal rings. The AHE conductivity is as large as that of a 3D quantum AHE, with the Hall angle (ΘH) reaching a record value ($$\tan {\Theta }^{H}=0.21$$ tan Θ H = 0.21 ) at the room temperature among magnetic conductors. Furthermore, we propose a material recipe to generate large AHE by gaping nodal rings without requiring Weyl points. Our work reveals an intrinsically magnetic platform to explore the interplay between magnetic dynamics and topological physics for developing spintronic devices.


JETP Letters ◽  
2016 ◽  
Vol 103 (11) ◽  
pp. 717-722 ◽  
Author(s):  
A. A. Zyuzin ◽  
R. P. Tiwari

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingqiang Gu ◽  
Jiayu Li ◽  
Hongyi Sun ◽  
Yufei Zhao ◽  
Chang Liu ◽  
...  

AbstractThe topological surface states of magnetic topological systems, such as Weyl semimetals and axion insulators, are associated with unconventional transport properties such as nonzero or half-quantized surface anomalous Hall effect. Here we study the surface anomalous Hall effect and its spectral signatures in different magnetic topological phases using both model Hamiltonian and first-principles calculations. We demonstrate that by tailoring the magnetization and interlayer electron hopping, a rich three-dimensional topological phase diagram can be established, including three types of topologically distinct insulating phases bridged by Weyl semimetals, and can be directly mapped to realistic materials such as MnBi2Te4/(Bi2Te3)n systems. Among them, we find that the surface anomalous Hall conductivity in the axion-insulator phase is a well-localized quantity either saturated at or oscillating around e2/2h, depending on the magnetic homogeneity. We also discuss the resultant chiral hinge modes embedded inside the side surface bands as the potential experimental signatures for transport measurements. Our study is a significant step forward towards the direct realization of the long-sought axion insulators in realistic material systems.


Sign in / Sign up

Export Citation Format

Share Document