scholarly journals Quark-quark interaction and quark matter in neutron stars

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Y. Yamamoto ◽  
N. Yasutake ◽  
Th. A. Rijken
2004 ◽  
Vol 19 (S1) ◽  
pp. 189-196
Author(s):  
Marcello Baldo
Keyword(s):  

2014 ◽  
Vol 23 (09) ◽  
pp. 1450078
Author(s):  
Victor Ts. Gurovich ◽  
Leonid G. Fel

We calculate the quasiclassical probability to emerge the quantum fluctuation which gives rise to the quark-matter drop with interface propagating as the self-similar spherical detonation wave (DN) in the ambient nuclear matter. For this purpose, we make use of instanton method which is known in the quantum field theory.


1981 ◽  
Vol 98 (1-2) ◽  
pp. 140-144 ◽  
Author(s):  
Enrique Alvarez

2003 ◽  
Vol 18 (32) ◽  
pp. 2255-2264 ◽  
Author(s):  
O. A. Battistel ◽  
G. Krein

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.


Science ◽  
2018 ◽  
Vol 360 (6390) ◽  
pp. 697-697 ◽  
Author(s):  
Adrian Cho
Keyword(s):  

2020 ◽  
Vol 16 (9) ◽  
pp. 907-910 ◽  
Author(s):  
Eemeli Annala ◽  
Tyler Gorda ◽  
Aleksi Kurkela ◽  
Joonas Nättilä ◽  
Aleksi Vuorinen
Keyword(s):  

2019 ◽  
Vol 28 (05) ◽  
pp. 1950034
Author(s):  
Prafulla K. Panda ◽  
Constança Providência ◽  
Steven A. Moszkowski ◽  
Henrik Bohr ◽  
João da Providência

We generalize the Bogoliubov quark-meson coupling (QMC) model to also include hyperons. The hyperon-[Formula: see text]-meson couplings are fixed by the model and the hyperon-[Formula: see text]-meson couplings are fitted to the hyperon potentials in symmetric nuclear matter. The present model predicts neutron stars with masses above 2[Formula: see text] and the radius of a 1.4[Formula: see text] star [Formula: see text]14[Formula: see text]km. In the most massive stars, bags overlap at the core of the star, and this may be interpreted as a transition to deconfined quark matter.


2004 ◽  
Vol 13 (07) ◽  
pp. 1249-1253
Author(s):  
DÉBORA P. MENEZES ◽  
C. PROVIDÊNCIA

We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.


Sign in / Sign up

Export Citation Format

Share Document