quark interaction
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Y. Yamamoto ◽  
N. Yasutake ◽  
Th. A. Rijken

2022 ◽  
Vol 258 ◽  
pp. 07001
Author(s):  
Márcio Ferreira ◽  
Renan Câmara Pereira ◽  
Constança Providência

We determine, within a meta-model, the properties of the nuclear matter equation of state (EoS) that allow for a phase transition to deconfinement matter. It is shown that the properties that define the isoscalar channel are the ones that are affected, in particular, a phase transition implies much larger values of the skewness and kurtosis. The effect of multi-quark interaction channels in the description of the quark phase in hybrid stars is also studied. NS properties, such as the mass and radius of the quark core, show an interplay dependence between the 8-quark vector and the 4-quark isovector-vector interactions. We show that low mass NS, M ~ 1.4M⊙, may already contain a quark core, and satisfy all existing NS observational constraints. We discuss the strangeness content of the quark core and its influence on the speed of sound.


2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
M. Abu-shady ◽  
N. H. Gerish ◽  
M. M. A. Ahmed

The exotic particles such as the pentaquarks are to strengthen understanding of important interactions and the principle of QCD in which pentaquarks contain two heavy- valence quarks. The structure of two bodies including an antiquark and two-diquark is introduced. A new potential for quark interaction is suggested which includes the logarithm potential, the linear potential, and the spin-spin interaction. The suggested potential is included in the framework of spinless of Bethe-Salpeter equation. A comparison with other works is presented which provides a good description of pentaquarks.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
R. Hussien ◽  
Sh. M. Sewailem ◽  
L. I. Abou-Salem

The quark-quark (QQ) interaction as a perturbed term to the nucleon-nucleon interaction (NN) without any coupling between them is studied in a hybrid model. This model is used to calculate the ground-state energies of 2H1 and 4He2 nuclei. In a semirelativistic framework, this model is encouraged for light nuclei and the instanton-induced interaction by using the QQ potential and the NN interaction for a small scale around the hadron boundaries. This hybrid model depends on two theories, the one-boson exchange potential (OBEP) and the Cornell-dressed potential (CDP) for QQ. A small effect of quark-quark interaction is obtained on the values of the ground-state energies, around 6.7 and 1.2 percentage for 2H1 and 4He2, respectively nuclei.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


2019 ◽  
Vol 34 (39) ◽  
pp. 1950322
Author(s):  
Marcello Baldo ◽  
Zahra Asadi Aghbolaghi ◽  
Isaac Vidaña ◽  
Mohsen Bigdeli

It has been found in previous works [M. Baldo and K. Fukukawa, Phys. Rev. Lett. 113, 241501 (2014); K. Fukukawa, M. Baldo, G. F. Burgio, L. Lo Monaco and H.-J. Schulze, Phys. Rev. 92, 065802 (2015)] that the nucleon–nucleon potential of [Y. Fujiwara, M. Kohno, C. Nakamoto and Y. Suzuki Phys. Rev. C 64, 054001 (2001); Y. Fujiwara et al., Phys. Rev. C 65, 014002 (2001)] gives an accurate saturation point in symmetric nuclear matter once the three hole-line contributions are included in the Brueckner–Bethe–Goldstone expansion without the addition of three-body forces in the nuclear Hamiltonian. The potential is based on a quark model of nucleons and on the quark–quark interaction together with quark exchange processes. These features introduce an intrinsic nonlocality of the nucleon–nucleon interaction. In order to clarify the role of the quark degrees of freedom and of the nonlocality in the saturation, we perform a comparative study of this potential and the traditional meson exchange models, exemplified in the CD-Bonn potential. We find that at the Brueckner–Hartree–Fock approximation, which corresponds to the two hole-line level of approximation, the dominant modification of the nucleon–nucleon interaction with respect to CD-Bonn is incorporated in the s-wave channels, where the quark degrees of freedom should be more relevant, in particular for the short range quark exchange processes. However, when the three hole-line contribution is included, we find that the higher partial waves play a relevant role, mainly in the term that describes the effect of the medium on the off-shell propagation of the nucleon.


2019 ◽  
Vol 34 (29) ◽  
pp. 1941008
Author(s):  
Walter Wilcox ◽  
Suman Baral

We describe work being done at Baylor University investigating the possibility of new states of mesonic matter containing two or more quark–antiquark pairs. To put things in context, we begin by describing the lattice approach to hadronic physics. We point out there is a need for a quark model which can give an overall view of the quark interaction landscape. A new application of the Thomas–Fermi (TF) statistical quark model is described, similar to a previous application to baryons. The main usefulness of this model will be to detect systematic energy trends in the composition of the various particles. It could be a key to identifying families of bound states, rather than individual cases. Numerical results based upon a set of parameters derived from a phenomenological model of tetraquarks are given.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10 ◽  
Author(s):  
Jan Vanek

Charm quarks are primarily produced at the early stages of ultra-relativistic heavy-ion collisions and can therefore probe the quark-gluon plasma throughout its whole evolution. Final-state open-charm hadrons are commonly used to experimentally study the charm quark interaction with the medium. Thanks to the excellent secondary vertex resolution provided by the Heavy Flavor Tracker, STAR is able to directly reconstruct D ± , D 0 , D s , and Λ c ± via their hadronic decay channels. The topological cuts for signal extraction are optimized using supervised machine learning techniques. In these proceedings, we present an overview of recent open charm results from the STAR experiment. The nuclear modification factors of open-charm mesons and Λ c ± /D 0 ratio are shown as functions of transverse momentum and collision centrality.


Sign in / Sign up

Export Citation Format

Share Document