scholarly journals Mass distribution from a quark matter equation of state

2007 ◽  
Vol 75 (3) ◽  
Author(s):  
T. S. Biró ◽  
P. Lévai ◽  
P. Ván ◽  
J. Zimányi
1994 ◽  
Vol 63 (4) ◽  
pp. 681-688 ◽  
Author(s):  
A. Mishra ◽  
H. Mishra ◽  
P. K. Panda ◽  
S. P. Misra

2012 ◽  
Vol 8 (S291) ◽  
pp. 146-146
Author(s):  
David Nice

AbstractNeutron star masses can be inferred from observations of binary pulsar systems, particularly by the measurement of relativistic phenomena within these orbits. The observed distribution of masses can be used to infer or constrain the equation of state for nuclear matter and to study astrophysical processes such as supernovae and binary star evolution. In this talk, I will review our present understanding of the neutron star mass distribution with an emphasis on the observational data.


2018 ◽  
Vol 97 (3) ◽  
Author(s):  
Sidney S. Avancini ◽  
Veronica Dexheimer ◽  
Ricardo L. S. Farias ◽  
Varese S. Timóteo

2018 ◽  
Vol 97 (2) ◽  
Author(s):  
Débora P. Menezes ◽  
Marcus B. Pinto ◽  
Constança Providência

2008 ◽  
Vol 23 (27n30) ◽  
pp. 2477-2480
Author(s):  
W. BENTZ ◽  
S. LAWLEY ◽  
A. W. THOMAS

We discuss the saturation mechanism for the nuclear matter equation of state in a chiral effective quark theory. The importance of the scalar polarizability of the nucleon is emphasized. The phase transition to color superconducting quark matter is also discussed.


2004 ◽  
Vol 13 (07) ◽  
pp. 1293-1296 ◽  
Author(s):  
GUILHERME F. MARRANGHELLO ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
JOSÉ A. de FREITAS PACHECO ◽  
MANFRED DILLIG ◽  
HÉLIO T. COELHO

We discuss, in this work, new aspects related to the emission of gravitational waves by neutron stars, which undergo a phase transition, from nuclear to quark matter, in its inner core. Such a phase transition would liberate around 1052–53 erg of energy in the form of gravitational waves which, if detected, may shed some light in the structure of these compact objects and provide new insights on the equation of state of nuclear matter.


2020 ◽  
Vol 29 (10) ◽  
pp. 2050093
Author(s):  
Masatoshi Morimoto ◽  
Yasuhiko Tsue ◽  
João da Providência ◽  
Constança Providência ◽  
Masatoshi Yamamura

To obtain the equation of state of quark matter and construct hybrid stars, we calculate the thermodynamic potential in the three-flavor Nambu–Jona-Lasinio model including the tensor-type four-point interaction and the Kobayashi–Maskawa–’t Hooft interaction. To construct the hybrid stars, it is necessary to impose the [Formula: see text] equilibrium and charge neutrality conditions on the system. It is shown that tensor condensed phases appear at large chemical potential. Under the possibility of the existence of the tensor condensates, the relationship between the radius and mass of hybrid stars is estimated.


Sign in / Sign up

Export Citation Format

Share Document