scholarly journals Description of pairing correlation in many-body finite systems with density functional theory

2011 ◽  
Vol 83 (2) ◽  
Author(s):  
Guillaume Hupin ◽  
Denis Lacroix
2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


2004 ◽  
Vol 18 (07) ◽  
pp. 1055-1067 ◽  
Author(s):  
K. KARLSSON ◽  
F. ARYASETIAWAN

We derive a simplified Bethe–Salpeter equation for calculating optical absorption based on the assumption of a local electron–hole interaction. The original four-point equation for the kernel is reduced to a two-point one. A connection to the exchange–correlation kernel in time-dependent density functional theory can be established. The resulting fxc is found to be -W/2 where W contains only the short-range (local) part of the Coulomb screened interaction. This simple approximation was successfully applied to optical absorption spectra of some excitonic crystals, reproducing not only the continuum excitons but also the bound ones.


2019 ◽  
Author(s):  
Eli Kraisler ◽  
Axel Schild

<div>The Pauli potential is an essential quantity in orbital-free density-functional theory (DFT) and in the exact electron factorization (EEF) method for many-electron systems. Knowledge of the Pauli potential allows the description of a system relying on the density alone, without the need to calculate the orbitals.</div><div>In this work we explore the behavior of the exact Pauli potential in finite systems as a function of the number of electrons, employing the ensemble approach in DFT. Assuming the system is in contact with an electron reservoir, we allow the number of electrons to vary continuously and to obtain fractional as well as integer values. We derive an expression for the Pauli potential for a spin-polarized system with a fractional number of electrons and find that when the electron number surpasses an integer, the Pauli potential jumps by a spatially uniform constant, similarly to the Kohn-Sham potential. The magnitude of the jump equals the Kohn-Sham gap. We illustrate our analytical findings by calculating the exact and approximate Pauli potentials for Li and Na atoms with fractional numbers of electrons.</div>


2020 ◽  
Vol 22 (14) ◽  
pp. 7577-7585 ◽  
Author(s):  
Florian R. Rehak ◽  
GiovanniMaria Piccini ◽  
Maristella Alessio ◽  
Joachim Sauer

Contrary to common believe, for eight adsorption cases, neither D3 or TS are an improvement compared to D2 nor van der Waals functionals or dDsC. Only the many body approaches are slightly better than D2(Ne) which uses Ne parameters for Mg2+ ions.


2006 ◽  
Vol 15 (02) ◽  
pp. 520-528 ◽  
Author(s):  
P. RING

Modern methods for the description of the nuclear many-body system use the concepts of density functional theory (DFT) and of effective field theory (EFT). Relativistic Hartree Bogoliubov (RHB) theory is a covariant version of this method, which takes into account Lorentz symmetry and pairing correlations in a fully self-consistent way. This theory has been used in the past for a very successful phenomenological description of ground state properties of nuclei all over the periodic table. Recently is also has been extended for the investigation of excited states. We discuss the calculation of rotational bands within cranked RHB-theory and recent investigations of vibrational excitations within the framework of relativistic Quasiparticle Random Phase Approximation (QRPA).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jacky Even ◽  
Laurent Pedesseau ◽  
Eric Tea ◽  
Samy Almosni ◽  
Alain Rolland ◽  
...  

Potentialities of density functional theory (DFT) based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.


Sign in / Sign up

Export Citation Format

Share Document