scholarly journals Valence nucleon populations in the Ni isotopes

2013 ◽  
Vol 87 (3) ◽  
Author(s):  
J. P. Schiffer ◽  
C. R. Hoffman ◽  
B. P. Kay ◽  
J. A. Clark ◽  
C. M. Deibel ◽  
...  
Keyword(s):  

2015 ◽  
Vol 93 (7) ◽  
pp. 711-715
Author(s):  
Rajesh Kumar ◽  
S. Sharma

We examine the collective nuclear structure of light and medium mass (Z = 50–82, N = 82–126) even–even nuclei using valence nucleon pair product (NpNn). We discuss the role of proton–neutron interaction in light mass nuclei and illustrate the variation of observables of collectivity and deformation (i.e., ground band moment of inertia) and B(E2) values with N and NpNn). The plot of these observables against NpNn vividly displays the formation of isotonic multiplets in quadrant I, strong dependence on NpNn in quadrant II and weak constancy with Z in quadrant III is illustrated.



2006 ◽  
Vol 21 (31n33) ◽  
pp. 2373-2382 ◽  
Author(s):  
Taiichi YAMADA ◽  
Hisashi HORIUCHI ◽  
Peter SCHUCK

The spin-orbit splittings of 13 C and 13 N corresponding to the ground state and second 0+ state (Hoyle state) in 12 C are investigated within a 12 C +N model. The agreement of the calculated results with experiments suggests that the [Formula: see text] and [Formula: see text] states around Ex = 9 ~ 10 MeV in 13 C and 13 N can be interpreted as the spin-orbit partner with the [Formula: see text] configuration. We also discuss the positive parity states (including [Formula: see text]) of 13 C and 13 N around the [Formula: see text] threshold, indicating to have the configuration of the Hoyle state in 12 C plus a valence nucleon in sd shell.



1996 ◽  
Vol 05 (04) ◽  
pp. 717-724 ◽  
Author(s):  
D.N. KADREV ◽  
A.N. ANTONOV ◽  
M.V. STOITSOV ◽  
S.S. DIMITROVA

Natural orbitals obtained within the coherent density fluctuation model and containing nucleon correlation effects are used to calculate characteristics of the A-nucleon system, such as the electron elastic magnetic scattering form factors. The calculations are performed for nuclei with a doubly-closed core and a valence nucleon in a stretched configuration (j=l+1/2), such as the 17 O and 41 Ca nuclei. It is shown that the calculations of the transverse form factor using natural orbitals improve the agreement with the experimental data in comparison with the case when shell-model single-particle wave functions are used.





1997 ◽  
Vol 56 (6) ◽  
pp. 574-579 ◽  
Author(s):  
J B Gupta ◽  
A K Kavathekar
Keyword(s):  




2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Phuc Hoang Nguyen ◽  
Phuc Tri Toan Nguyen ◽  
Khoa Tien Dao

The elastic scattering cross section measured at energies $E\lesssim 10$ MeV/nucleon for some light heavy-ion systems having two identical cores like \oc exhibits an enhanced oscillatory pattern at the backward angles. Such a pattern is known to be due to the transfer of the valence nucleon or cluster between the two identical cores. In particular, the elastic $\alpha$ transfer has been shown to originate directly from the core-exchange symmetry in the elastic \oc scattering. Given the strong transition strength of the $2^+_1$ state of $^{12}$C and its large overlap with the $^{16}$O ground state, it is natural to expect a similar $\alpha$ transfer process (or inelastic $\alpha$ transfer) to take place in the inelastic \oc scattering. The present work provides a realistic coupled channel description of the $\alpha$ transfer in the inelastic \oc scattering at low energies. Based on the results of the 4 coupled reaction-channels calculation, we show a significant contribution of the $\alpha$ transfer to the inelastic \oc scattering cross section at the backward angles. These results suggest that the explicit coupling to the $\alpha$ transfer channels is crucial in the studies of the elastic and inelastic scattering of a nucleus-nucleus system with the core-exchange symmetry.\Keywords{optical potential, coupled reaction channels, inelastic $\alpha$ transfer





2011 ◽  
Vol 59 (2(3)) ◽  
pp. 907-910
Author(s):  
K. Yamamoto ◽  
H. Masui ◽  
M. Ohta ◽  
K. Kato


Sign in / Sign up

Export Citation Format

Share Document